Применение искусственного интеллекта. Носов Н.Ю., Соколов М.Д

💖 Нравится? Поделись с друзьями ссылкой

В этой статье я поделюсь опытом выращивания простейшего искусственного интеллекта (ИИ) с использованием генетического алгоритма, а также расскажу про минимальный набор команд, необходимый для формирования любого поведения.

Результатом работы стало то, что ИИ, не зная правил, самостоятельно освоил игру крестики-нолики и нашел слабости ботов, которые играли против него. Но начал я с еще более простой задачи.

Набор команд

Все началось с подготовки набора команд, которым мог располагать ИИ. Языки высокого уровня содержат сотни различных операторов. Чтобы выделить необходимый минимум, я решил обратиться к языку Ассемблер. Однако, оказалось, что и он содержит множество команд.

Мне требовалось, чтобы ИИ мог читать и выводить данные, работать с памятью, выполнять вычисления и логические операции, делать переходы и циклы. Я наткнулся на язык Brainfuck, который содержит всего 8 команд и может выполнять любые вычисления (т.е. полон по Тьюрингу). В принципе, он подходит для генетического программирования, но я пошел дальше.

Я задался вопросом: какое минимальное количество команд необходимо для реализации любого алгоритма? Как оказалось - одна!

Процессор URISC содержит всего одну команду: вычесть и пропустить следующую инструкцию, если вычитаемое было больше уменьшаемого. Этого достаточно для построения любого алгоритма.

Олег Мазонка пошел еще дальше, он разработал команду BitBitJump и доказал, что она полна по Тьюрингу. Команда содержит три адреса, копирует один бит из первого по второму адресу памяти и передает управление на третий адрес.

Позаимствовав идеи Олега, для упрощения работы, я разработал команду SumIfJump. Команда содержит четыре операнда: A, B, C, D и выполняет следующее: к ячейке по адресу B прибавляет данные из ячейки по адресу A, если значение получилось больше заданного*, то переходит по адресу C, иначе переходит по адресу D.

Примечание

*В данном случае использовалось 128 - половина от длинны генома.


Когда операнд A обращается к ячейке памяти N0, происходит ввод данных, а когда к ячейке N1, то вывод.

Ниже представлен код SumIfJump на FreePascal (бесплатный аналог Delphi).

Procedure RunProg(s: TData); var a, b, c, d: TData; begin Inc(NStep); if NStep > MaxStep then begin ProgResult:= "MaxStep"; Exit; end; a:= s; b:= s + 1; c:= s + 2; d:= s + 3; a:= Prog[a]; b:= Prog[b]; c:= Prog[c]; d:= Prog[d]; if a = 0 then begin ProgResult:= "Input"; Exit; end; if a = 1 then begin ProgResult:= "Output"; Exit; end; Prog[b] := Prog[b] + Prog[a]; if Prog[b] < ProgLength div 2 then RunProg(c) else RunProg(d); end;
SumIfJump реализует самомодифицируемый код. Может выполнять любые алгоритмы, доступные на обычном языке программирования. Код легко изменяется и выдерживает любые манипуляции.

Простая задача

Итак, у нашего ИИ всего одна команда. Пока крестики-нолики для него очень сложная игра, и я начал с более простой.

Бот выдает случайное число, а ИИ должен считать данные и дать ответ. Если число больше среднего (от диапазона случайных чисел), ИИ должен выдать число меньше среднего и наоборот.

Геном нашего ИИ состоит из 256 ячеек со значениями от 0 до 255. Каждое значение - это и память, и код, и адрес. Количество шагов выполнения кода ограничено 256. Операнды читаются друг за другом.

Первоначально геном формируется набором случайных чисел, поэтому ИИ не знает, во что ему нужно играть. Более того, он не знает, что нужно последовательно вводить и выводить данные, отвечая боту.

Популяция и отбор

Первая популяция состоит из 256 ИИ, которые начинают играть с ботом. Если ИИ совершает правильные действия, например, запросил данные на ввод, а потом что-то вывел, то ИИ получает очки. Чем больше правильных действий, тем больше очков.

16 ИИ, которые набрали больше всего очков, дают по 15 потомков и продолжают участвовать в игре. Потомок - это мутант. Мутация происходит заменой у копии родителя одной случайной ячейки на случайное значение.

Если в первой популяции ни один ИИ не набрал очков, формируется следующая популяция. И так до тех пор, пока какой-нибудь из ИИ не начнет совершать правильные действия и давать «правильное» потомство.

Эволюция


Между значимыми событиями проходили тысячи смен поколений. Программа была запущена в несколько потоков на Core i7. Вычисления заняли около 15 минут.

  1. Когда ИИ «лидер» совершал случайную ошибку и не набирал достаточное количество очков, популяция начинала деградировать, т.к. потомство формировалось из «второстепенных» родителей.
  2. Бывало так, что в потоке с аутсайдерами, которые топтались на месте, происходила удачная мутация, обеспечивающая взрывной рост набираемых очков. После чего этот поток становился лидером.
  3. Иногда в течение долгого времени не происходило никаких удачных мутаций, и даже 500 тыс. поколений не хватало, чтобы завершить отбор.

Заключение

В заключение я проделал то же с игрой крестики-нолики. Размер генома использовал тот, что и в первом случае. Количество шагов было увеличено до 1024, а размер популяции до 64 (для более быстрого расчета). Расчет занял несколько больше времени. Все происходило примерно по тому же сценарию.

Сначала ИИ играл против «рандомайзера». Я так назвал бота, который ходит случайным образом. Довольно быстро ИИ начал его обыгрывать, заполняя какую-либо строчку. Далее я усложнил задачу, добавив рандомайзеру немного разума: занимать линию, если есть возможность, либо защищаться. Однако, и в этом случае ИИ нашел слабости бота и стал обыгрывать его. Пожалуй, рассказ об этом - это тема для отдельной статьи.

Сын просил написать программу, чтоб ИИ играли между собой, а не с ботом. Были идеи сделать то же для игры шашки или го, однако, для этого у меня уже не хватило времени.

Единственный метод, который я применял для получения новых особей, - это мутация. Можно также использовать кроссовер и инверсию. Возможно, эти методы ускорят получение требуемого результата.

В конце родилась идея: дать ИИ возможность управлять всеми процессами на ПК и бороться за ресурсы компьютера. Подключить ПК к интернету, а в качестве вычислительных мощностей использовать пул старых биткойн ферм…

Как сказал, проводя аналогичный эксперимент, блогер

С того момента, как искусственный интеллект был признан научным направлением, а это произошло в середине 50-х годов прошлого века, разработчикам интеллектуальных систем пришлось решать множество задач. Условно все задачи можно разделить на несколько классов: распознавание человеческого языка и перевод, автоматические доказательства теорем, создание игровых программ, распознавание изображений и машинное творчество. Рассмотрим кратко сущность каждого класса задач.

Доказательство теорем.

Автоматическое доказательство теорем является старейшей сферой применения искусственного интеллекта. В этой области было проведено немало исследований, результатом которых стало появление формализованных алгоритмов поиска и языков формальных представлений, таких как PROLOG - логический язык программирования, и исчисление предикатов.

Автоматические доказательства теорем привлекательны тем, что они основываются на общности и строгости логики. Логика в формальной системе предполагает возможность автоматизации, а это значит, что если представить задачу и относящуюся к ней дополнительную информацию в виде совокупности логических аксиом, а частные случаи задачи - как теоремы, требующие доказательства, можно получить решение многих проблем. Системы математических обоснований и автоматические доказательства теорем содержат в своей основе именно этот принцип. В прошлые годы делались неоднократные попытка написать программу для автоматических доказательств теорем, однако так и не удалось создать систему, позволяющую решать задачи с использованием единого метода. Любая относительно сложная эвристическая система могла генерировать множество доказуемых теорем, не относящихся к делу, в результате программам приходилось доказывать их до тех пор, пока не обнаруживалась нужная. Из-за этого возникло мнение, что с большими пространствами можно работать только с помощью неформальных стратегий, специально разработанных для конкретных случаев. На практике этот подход оказался достаточно плодотворным и был положен, наряду с другими, в основу экспертных систем.

Вместе с тем, нельзя игнорировать рассуждения, основанные на формальной логике. Формализованный подход позволяет решить многие проблемы. В частности, применяя его, можно управлять сложными системами, проверять корректность компьютерных программ, проектировать и проверять логические цепи. Кроме того, исследователи автоматического доказательства теорем разработали мощные эвристики, в основе которых находится оценка синтаксической формы логических выражений. В результате стало возможным понижать уровень сложности пространства поиска, не прибегая к разработке специальных стратегий.

Автоматическое доказательство теорем вызывает интерес учёных и по той причине, что для особо сложных проблем также можно использовать систему, хотя и не без вмешательства человека. В настоящее время программы часто выступают в роли помощников. Специалисты разбивают задачу на несколько подзадач, затем продумываются эвристики для перебора возможных оснований. Далее программа доказывает леммы, проверяет менее существенные предположения и осуществляет дополнения к формальным аспектам доказательств, очерченных человеком.

Распознавание образов.

Распознавание образов представляет собой выделение существенных признаков, характеризующих исходные данные, из общей совокупности признаков, и на основании полученной информации отнесение данных к определённому классу.

Теория распознавания образов - это раздел информатики, в задачи которого входит развитие основ и методов идентификации и классификации объектов (предметов, процессов, явлений, ситуаций, сигналов и т. д.), каждый из которых наделён совокупностью некоторых признаков и свойств. На практике идентифицировать объекты приходится довольно часто. Характерная ситуация - распознавание цвета светофора и принятие решения о том, следует ли в данный момент переходить улицу. Существуют и другие области, в которых нельзя обойтись без распознавания объектов, например, оцифровка аналоговых сигналов, военное дело, системы безопасности и так далее, поэтому на сегодняшний день учёные продолжают активную работу над созданием систем распознавания образов.

Работа ведётся в двух основных направлениях:

  • · Исследование, объяснение и моделирование способностей к распознаванию, присущих живым существам.
  • · Развитие теоретических и методологических основ создания устройств, которые позволяли бы решать отдельные задачи в прикладных целях.

Постановка задач распознавания осуществляется с использованием математического языка. В то время как теория искусственных нейронных сетей базируется на получении результатов путём экспериментов, постановка задач распознавания образов происходит не на основе эксперимента, а на основе математических доказательств и логических рассуждений.

Рассмотрим классическую постановку такой задачи. Имеется множество объектов, относительно которых следует провести классификацию. Множество состоит из подмножеств, или классов. Задано: информация, описывающая множество, информация о классах и описание отдельно взятого объекта без указания на его принадлежность к определённому классу. Задача: на основании имеющихся данных определить, к какому классу относится объект.

Если в задачах присутствуют монохромные изображения, они могут быть рассмотрены как функции на плоскости. Функция будет представлять собой формальную запись изображения и в каждой точке выражать определённую характеристику данного изображения - оптическую плотность, прозрачность, яркость и т. д. В таком случае моделью множества изображения будет являться множество функций на плоскости. Постановка задачи распознавания зависит от того, какими должны этапы, следующие за распознаванием.

К методам распознавания образов относятся эксперименты Ф. Розенблатта, который ввёл понятие модели мозга. Задача эксперимента - показать, как возникают психологические явления в физической системе с известными функциональными свойствами и структурой. Учёный описал простейшие эксперименты по распознаванию, однако их особенностью является не детерминированный алгоритм решения.

Наиболее простой эксперимент, на основе которого может быть получена психологически значимая информация о системе, заключается в следующем: персептрону предъявляется последовательность из двух различных стимулов, на каждый из которых он должен реагировать некоторым образом, причём для разных стимулов реакция должна быть различной. Цели такого эксперимента могут быть разными. Перед экспериментатором может стоять задача изучить возможность спонтанного различения системой представленных стимулов без вмешательства извне, или же наоборот, изучить возможность принудительного распознавания. Во втором случае экспериментатор обучает систему классифицировать различные объекты, которых может быть более двух. Опыт с обучением проходит следующим образом: персептрону предъявляют образы, среди которых есть представители всех классов, подлежащих распознаванию. Правильная реакция подкрепляется в соответствии с правилами модификации памяти. После этого экспериментатор предъявляет персептрону контрольный стимул и определяет вероятность получения заданной реакции для образов данного класса. Контрольный стимул может совпадать с одним из объектов, представленных в обучающей последовательности, или отличаться от всех представленных объектов. В зависимости от этого получают следующие результаты:

  • · Если контрольный стимул отличается от всех представленных ранее обучающих стимулов, то кроме чистого различения эксперимент исследует элементы обобщения.
  • · Если контрольный стимул вызывает активизацию некоторой группы сенсорных элементов, не совпадающих ни с одним из элементов, активизировавшихся при воздействии стимулов того же класса, предъявленных ранее, то эксперимент исследует чистое обобщение и не включает исследование распознавания.

Несмотря на то, что персептроны не способны к чистому обобщению, они удовлетворительно справляются с задачами распознавания, особенно в тех случаях, когда демонстрируются образы, в отношении которых у персептроны уже имеется определённый опыт.

Распознавание человеческой речи и машинный перевод.

К долгосрочным целям искусственного интеллекта относится создание программ, способных распознавать человеческий язык и использовать его для построения осмысленных фраз. Способность к пониманию и применению естественного языка - фундаментальная особенность человеческого интеллекта. Успешная автоматизация этой способности позволила бы намного повысить эффективность компьютеров. К настоящему времени написано много программ, способных понимать естественный язык, и они с успехом применяются в ограниченных контекстах, однако до сих пор не существует систем, которые могли бы применять естественные языки с такой же общностью и гибкостью, как это делает человек. Дело в том, что процесс понимания естественного языка заключается не только в простом разборе предложений на составляющие и поиске значений отдельных слов в словарях. Как раз с этой задачей программы успешно справляются. Для применения человеческой речи необходимы обширные знания о предмете беседы, об идиомах, имеющих к нему отношение, кроме того, необходима способность понимать неясности, недомолвки, профессионализмы, жаргонизмы, просторечные выражения и многое другие из того, что присуще нормальной человеческой речи.

В качестве примера можно привести разговор о футболе, где используются такие слова как «нападающий», «пас», «передача», «штрафной», «защитник», «форвард», «капитан» и другие. Каждое из этих слов характеризуется набором значений, и по отдельности слова вполне доступны для понимания, но фраза, составленная из них, будет непонятна любому, кто не увлекается футболом и ничего не знает об истории, правилах и принципах этой игры. Таким образом, для понимания и применения человеческого языка необходима совокупность фоновых знаний, и одной из главных проблем в автоматизации понимания и применения естественного человеческого языка является сбор и систематизация таких знаний.

Поскольку семантические значения используются в искусственном интеллекте очень широко, учёные разработали ряд методов, позволяющих в какой-то степени их структурировать. Всё же большая часть работы ведётся в тех проблемных областях, которые являются хорошо понимаемыми и специализированными. Примером может служить методика «микромира». Одной из первых программ, где она была использована, стала программа SHRDLU, разработанная Терри Виноградом, представляющая собой одну из систем понимания человеческой речи. Возможности программы были довольно ограниченными и сводились к «беседе» о расположении блоков разных цветов и форм, а также к планированию простейших действий. Программа давала ответы на вопросы типа «Какого цвета пирамидка на кросном бруске?» и могла давать указания вида «Поставьте синий блок на красный». Подобные задачи часто затрагивались исследователями искусственного интеллекта и в дальнейшем получили известность под названием «мир блоков».

Несмотря на то, что программа SHRDLU успешно «беседовала» о расположении блоков, она не была наделена способностью абстрагироваться от этого «микромира». В ней использовались слишком простые методики, которым была недоступна передача семантической организации предметных областей более высокой сложности.

Текущие работы в области понимания и применения естественных языков направлены в основном на поиск достаточно общих формализмов представления, которые можно было бы адаптировать к специфичным структурам заданных областей и применять в широком круге приложений. Большинство существующих методик, представляющих собой модификации семиотических сетей, исследуются и применяются при написании программ, способных распознавать естественный язык в узких предметных областях. В то же время, современные возможности не позволяют создать универсальную программу, способную понимать человеческую речь во всём её многообразии.

Среди многообразия задач распознавания образов можно выделить следующие:

  • · Классификация документов
  • · Определение месторождений полезных ископаемых
  • · Распознавание изображений
  • · Распознавание штрих-кодов
  • · Распознавание символов
  • · Распознавание речи
  • · Распознавание лиц
  • · Распознавание номеров автомобилей

Искусственный интеллект в игровых программах.

Игровой искусственный интеллект включает в себя не только методы традиционного ИИ, но также и алгоритмы информатики в целом, компьютерной графики, робототехники и теории управления. От того, как именно реализован ИИ, зависят не только системные требования, но и бюджет игры, поэтому разработчикам приходится балансировать, стараясь, чтобы игровой искусственный интеллект был создан с минимальными затратами, и чтобы при этом он был интересным и нетребовательным к ресурсам. Здесь используется совершенно иной подход, чем в случае с традиционным искусственным интеллектом. В частности, широко применяются эмуляции, обманы и различные упрощения. Пример: особенностью шутеров от первого лица является способность ботов к безошибочному движению и мгновенному прицеливанию, но при этом у человека не остаётся ни единого шанса, поэтому способности ботов искусственно занижаются. В то же время, на уровне расставляются контрольные точки, для того чтобы боты могли действовать командой, устраивать засады и т. д. искусственный интеллект образ

В компьютерных играх, которыми управляет игровой искусственный интеллект, присутствуют следующие категории персонажей:

  • · мобы - персонажи с низким уровнем интеллекта, враждебные к человеческому игроку. Игроки уничтожают мобов с целью прохождения территории, получения артефактов и очков опыта.
  • · неигровые персонажи - обычно эти персонажи дружественны или нейтральны к игроку.
  • · боты - персонажи, враждебные по отношению к игрокам, наиболее сложные в программировании. Их возможности приближаются к возможностям игровых персонажей. В любой момент времени против игрока выступает некоторое количество ботов.

Внутри компьютерной игры существует множество областей, в которых используется широкое многообразие эвристических алгоритмов искусственного игрового интеллекта. Наиболее широко игровой ИИ применяется как один из способов контроля неигровых персонажей. Другим, не менее распространённым способом контроля, является скриптинг. Ещё одно очевидное применение игрового ИИ, особенно в стратегиях реального времени, - поиск пути, или метод, позволяющий определить, как неигровой персонаж может попасть из одной точки на карте в другую. При этом нужно учитывать препятствия, ландшафт и возможный «туман войны». Динамическая балансировка мобов также не обходится без применения искусственного интеллекта. Во многих играх была опробована концепция непредсказуемого интеллекта. Это такие игры как Nintendogs, Black & White, Creatures и всем известная игрушка «тамагочи». В этих играх персонажами являются домашние животные, поведение которых изменяется с учётом действий, произведённых игроком. Создаётся впечатление, что персонажи способны обучаться, хотя на самом деле их действия являются результатом выбора из ограниченного множества решений.

Многие игровые программисты считают частью игрового искусственного интеллекта любую методику, с помощью которой создаётся иллюзия интеллекта. Однако этот подход не совсем верен, так как те же самые методики могут использоваться не только в движках игрового ИИ. Например, при создании ботов используются алгоритмы с введенной в них информацией о возможных будущих столкновениях, вследствие чего боты приобретают «умение» избегать этих столкновений. Но эти же методики представляют собой важный и необходимый компонент физического движка. Ещё один пример: важным компонентом системы прицеливания бота являются водные данные, и те же самые данные широко применяются в графическом движке при рендеринге. Финальный пример - скриптинг. Этот инструмент с успехом может применяться во всех аспектах игровой разработки, но чаще всего его рассматривают как один из способов контролирования действий неигровых персонажей.

По мнению пуристов, выражение «игровой искусственный интеллект» не имеет права на существование, так как является преувеличением. В качестве главного аргумента они выдвигают то, что в игровом ИИ используются лишь некоторые направления науки о классическом искусственном интеллекте. Следует принять во внимание и то, что целями ИИ является создание самообучающихся систем и даже создание искусственного интеллекта, способного рассуждать, в то время как часто ограничивается эвристикой и набором из нескольких эмпирических правил, которых бывает достаточно для создания хорошего геймплея и предоставления игроку ярких впечатлений и ощущений от игры.

В настоящее время разработчики компьютерных игр проявляют интерес к академическому ИИ, а академическое сообщество, в свою очередь, начинает интересоваться компьютерными играми. В связи с этим возникает вопрос, в какой степени игровой и классический ИИ различаются между собой. Вместе с тем, игровой искусственный интеллект всё ещё рассматривается как одна из под-отраслей классического. Это обусловлено тем, что искусственный интеллект имеет различные прикладные области, отличающиеся друг от друга. Ели говорить об игровом интеллекте, важным отличием здесь является возможность обмана с целью решения некоторых задач «законными» способами. С одной стороны, недостаток обмана в том, что зачастую он приводит к нереалистичному поведению персонажа и по этой причине не всегда может быть использован. С другой стороны, сама возможность такого обмана служит важным отличием игрового ИИ.

Ещё одной интересной задачей искусственного интеллекта является обучение компьютера игре в шахматы. Её решением занимались учёные всего мира. Особенность данной задачи в том, что демонстрация логических способностей компьютера возможна только при наличии реального противника. Впервые такая демонстрация состоялась в 1974 году, в Стокгольме, где прошёл чемпионат мира по шахматам среди шахматных программ. В данном соревновании победила программа «Каисса, созданная советскими учёными из Института проблем управления академии наук СССР, расположенного в Москве.

Искусственный интеллект в машинном творчестве.

Природа человеческого интеллекта пока изучена недостаточно, а степень изучения природы человеческого творчества - ещё меньше. Тем не менее, одним из направлений искусственного интеллекта является машинное творчество. Современные компьютеры создают музыкальные, литературные и живописные произведения, а в индустрии компьютерных игр и кинофильмов уже давно используются реалистичные образы, создаваемые машинами. Существующие программы создают различные образы, которые могут быть легко восприняты и поняты человеком. Это особенно важно, когда речь идёт об интуитивных знаниях, для формализованной проверки которых пришлось бы приложить немалые умственные усилия. Так, музыкальные задачи с успехом решаются с использованием языком программирования, одним из которых является язык CSound. Специальное программное обеспечение, с помощью которого создаются музыкальные произведения, представлено программами алгоритмической композиции, системами интерактивной композиции, системами синтеза и обработки звука.

Экспертные системы.

Разработка современных экспертных систем ведётся исследователями с начала 1970-х годов, а в начале 1980-х экспертные системы начали разрабатываться и на коммерческой основе. Прообразами экспертных систем, предложенными в 1832 году русским учёным С. Н. Корсаковым, стали механические устройства, названные «интеллектуальными машинами», которые позволяли находить решение, руководствуясь заданными условиями. Например, анализировались симптомы заболевания, наблюдаемые у пациента, и по результатам этого анализа предлагались самые подходящие лекарства.

Информатика рассматривает экспертные системы совместно с базами знаний. Системы представляют собой модели поведения экспертов, основанные на применении процедур принятия решений и логических выводов. Базы знаний рассматриваются как совокупность правил логического вывода и фактов, имеющих непосредственное отношение к выбранной сфере деятельности.

В конце прошлого века сложилась определённая концепция экспертных систем, глубоко ориентированная на текстовый человеко-машинный интерфейс, который в то время был общепринятым. В настоящее время эта концепция подверглась серьёзному кризису, связанному, по всей видимости, с тем, что в пользовательских приложениях на смену текстовому интерфейсу пришёл графический. Кроме того, реляционная модель данных и «классический» взгляд на построение экспертных систем плохо согласуются между собой. Следовательно, организация баз знаний экспертных систем не может проводиться эффективно, по крайней мере, с использованием современных промышленных систем управления базами данных. В литературных и сетевых источниках приводится множество примеров экспертных систем, называемых «распространёнными» или «широко известными». На деле все эти экспертные системы были созданы ещё в 80-х годах прошлого столетия и к настоящему моменту либо прекратили своё существование, либо являются безнадёжно устаревшими и существуют благодаря немногочисленным энтузиастам. С другой стороны, разработчики современных программных продуктов часто именуют свои творения экспертными системами. Подобные заявления - не более чем маркетинговый ход, ведь в действительности эти продукты не являются экспертными системами (примером может служить любая из компьютерных справочно-правовых систем). Энтузиасты пытаются объединить подходы к созданию пользовательского интерфейса с «классическими» подходами к созданию экспертных систем. Эти попытки нашли отражение в таких проектах как CLIPS.NET, CLIPS Java Native Interface и других, однако крупные компании, выпускающие программное обеспечение, не торопятся финансировать подобные проекты, и по этой причине разработки не продвигаются дальше экспериментальной стадии.

Всё многообразие областей, в которых могут применяться системы, основанные на знаниях, можно разделить на классы: медицинская диагностика, планирование, прогнозирование, контроль и управление, обучение, интерпретация, диагностика неисправностей в электрическом и механическом оборудовании, обучение. Рассмотрим каждый из этих классов подробнее.

а) Медицинские диагностические системы.

С помощью таких систем определяют, как связаны между собой различные нарушения деятельности организма и их возможные причины. Самой известной диагностической системой является MYCIN. Её применяют для диагностики менингита и бактериальных инфекций, а также для наблюдения за состоянием больных, у которых обнаружены данные заболевания. Первая версия системы была разработана в 70-х годах. На сегодняшний день её возможности значительно расширились: система ставит диагнозы на том же профессиональном уровне, что и врач-специалист, и может применяться в разных областях медицины.

б) Прогнозирующие системы.

Системы предназначены для предсказания событий или результатов событий на основе имеющихся данных, характеризующих текущую ситуацию или состояние объекта. Так, программа «Завоевание Уолл-Стрита», использующая в свой работе статистические методы алгоритмов, способна анализировать конъюнктуру рынка и разрабатывать план капиталовложений. В программе используются алгоритмы и процедуры традиционного программирования, поэтому её нельзя отнести к системам, основанным на знаниях. Уже сегодня существуют программы, способные предсказывать поток пассажиров, урожайность и погоду, анализируя имеющиеся данные. Такие программы достаточно просты, и некоторые из них могут использоваться на обычных персональных компьютерах. Однако до сих пор не существует экспертных систем, которые могли бы, основываясь на данных о конъюнктуре рынка, подсказать, как можно увеличить капитал.

в) Планирование.

Системы планирования предназначены для решения задач с большим количество переменных с целью достижения конкретных результатов. Впервые в коммерческой сфере такие системы были использованы дамасской фирмой Informat. Руководство компании распорядилось становить в холле офиса 13 станций, которые проводили бесплатные консультации для покупателей, желающих приобрести компьютер. Машины помогали сделать выбор, максимально соответствующий бюджету и пожеланиям покупателя. Также экспертные системы были применены компанией Boeing для таких целей как ремонт вертолётов, установление причин выхода из строя самолётных двигателей и проектирование комических станций. Фирма DEC создала экспертную систему XCON, способную определять и изменять конфигурацию компьютерных систем VAX с учётом требований покупателей. В настоящее время фирма DEC занимается разработкой более мощной системы XSEL, в которую входит база знаний XCON. Цель создания системы - помощь потребителям в подборе вычислительной системы с требуемой конфигурацией. Отличие системы XSEL от XCON в том, что она является интерактивной.

г) Интерпретация.

Интерпретирующие системы способны делать заключения, основываясь на результатах наблюдения. Одной из самых известных интерпретирующих систем является система PROSPECTOR. Она работает, используя данные, основанные на знаниях девяти экспертов. Эффективность системы можно оценить по одному примеру: используя девять различных методов экспертизы, система обнаружила месторождение руды, наличие которого не мог предполагать ни один эксперт. Другая известная система интерпретирующего типа - HASP/SIAP. Она использует данные акустических систем слежения и на их основе определяет местонахождение судов в Тихом океане и их типы.

д) Интеллектуальные системы контроля и управления.

Экспертные системы успешно применяются для контроля и управления. Они способны анализировать данные, полученные от нескольких источников, и по результатам анализа принимать решения. Такие системы способны осуществлять медицинский контроль и управлять движением самолётов, кроме того, они применяются на атомных электростанциях. Также с их помощью осуществляется регулирование финансовой деятельности предприятия и вырабатываются решения в критических ситуациях.

е) Диагностика и устранение неисправностей в электрическом и механическом оборудовании.

Системы, основанные на знаниях, применяются в таких случаях, как:

ремонт дизельных локомотивов, автомобилей и других электрических и механических устройств;

диагностика и устранение ошибок и неисправностей в программном и аппаратном обеспечении вычислительных машин.

ж) Компьютерные системы обучения.

Достаточно эффективно использование систем, основанных на знаниях, в обучающих целях. Система анализирует поведение и деятельность объекта и в соответствии с полученной информацией изменяет базу знаний. Простейший пример такого обучения - компьютерная игра, в которой уровни становятся сложнее по мере того, как возрастает квалификация игрока. Интересная обучающая система - EURISCO - разработана Д. Ленатом. В ней используются простые эвристики. Система была применена в игре, имитирующей боевые действия. Суть игры - определить оптимальный состав флотилии, которая могла бы наносить поражения, соблюдая множество правил. Система успешно справилась с этой задачей, включив в состав флотилии одно маленькое судно и несколько кораблей, способных провести атаку. Правила игры менялись ежегодно, но система EURISCO неизменно одерживала победу на протяжении трёх лет.

Существует множество экспертных систем, которые по содержанию знаний могут быть отнесены сразу к нескольким типам. К примеру, система, которая осуществляет планирование, может быть также и обучающей. Она способна определять уровень знаний обучаемого и, основываясь на этой информации, составлять учебный план. Управляющие системы применяются для планирования, прогнозирования, диагностики и контроля. Системы, предназначенные для охраны дома или квартиры, могут отслеживать изменения, происходящие в окружающей обстановке, прогнозировать развитие ситуации и составлять план дальнейших действий. Например, открылось окно и через него в помещение пытается проникнуть вор, следовательно, необходимо вызвать полицию.

Широкое распространение экспертных систем началось в 1980-х годах, когда впервые произошло их коммерческое внедрение. ЭС используются во многих сферах, включая бизнес, науку, технику, производство и другие отрасли, характеризующиеся вполне определённой предметной областью. В данном контексте «вполне определённая» означает, что человек может разделить ход рассуждения на отдельные этапы, и таким образом может быть решена любая задача, которая находится в рамках данной области. Следовательно, аналогичные действия может выполнить и компьютерная программа. Можно с уверенностью сказать, что использование возможностей искусственного интеллекта открывает перед человечеством безграничные возможности.

Одно из направлений развития IT-технологий – это искусственный интеллект (ИИ). Аналитики сообщают, что если в 2011 году было заключено 67 сделок с компаниями, ведущими разработки в области искусственного интеллекта , то за прошлый год их число увеличилось до 400. О статистике 2016 года пока говорить рано, но рекордные 140 сделок только за первый квартал текущего года позволяют предположить взлет востребованности данного сектора. Это обосновано, т.к. технология может найти применение во многих сфер жизни.

Диаграмма – Динамика количества сделок с разработчиками искусственного интеллекта , ед .

В сельском хозяйстве искусственный интеллект используется в оборудовании для обработки и сбора урожая. Работы по данному направлению ведут как зарубежные инженеры, так и российские.

Например, компания Autonomous Tractor Cooperation еще в 2012 году представила трактор Spirit беспилотного управления. Его комплектация содержит систему AutoDrive , которая представляет собой симбиоз радионавигации и лазерного гироскопа. Данная система обеспечивает самостоятельное передвижение трактора по маршруту, который он предварительно проехал с водителем.


В этом году российский производитель Cognitive Technologies организовала тестирование беспилотного трактора, оснащенного компьютерным зрением. Такое решение позволяет предупреждать повреждение сельскохозяйственной техники, т.к. заранее обнаруживает посторонние предметы на обрабатываемых площадях. Видеокамеры и навигационные датчики, предусмотренные его устройством, собирают информацию о местоположении опасных предметов в режиме реального времени.

Самостоятельный трактор разработала компания CNH Industrial. Его уникальность заключается в том, что он аккумулируют информацию с помощью основанной на явлении отражения и рассеивания света системе лидар.

Такие разработчики как Blue River Technology, PlantVillage взяли вектор на развитие технологий, борющихся с сорняками. Интеллектуальные машины распознают и уничтожают ненужные растения.

Ожидается, что беспилотные транспортные решения значительно увеличат производительность сельского хозяйства. Возможно, в будущем данный сектор сможет полностью функционировать без участия человека. Ученые полагают, что искусственный интеллект займет свою нишу и в так называемых вертикальных фермах, т.е. полностью тепличном сельском хозяйстве. Устройства смогут отслеживать важные для урожая показатели, такие как влажность, освещенность и температура, оперативно реагируя на их колебания.

Искусственный интеллект в г осударственном секторе

Искусственный интеллект уже несколько лет используется на западе в правоохранительных структурах и пожарных службах.

Разработчики программы Series Finder определили девять сценариев краж. Алгоритмы, заложенную в основу технологии, анализируют множество факторов, среди которых простота взлома дома, время суток, день недели и т.д., и воспроизводят потенциальное поведение преступника. Это способствует не только быстрому раскрытию преступления по готовому шаблону, но и позволяет предсказывать и предупреждать опасность.

Специалисты Рочестерского университета утверждают, что при помощи интеллектуальных систем по поведению пользователя в Instagram можно выявлять наркоторговцев.


Тем временем NASA проектирует «железного» ассистента для пожарных, цель которого заключается в организации слаженного взаимодействия пожарной группы, а также оперативное информирование о состоянии ситуации каждого специалиста на месте возгорания.

Исследователи полагают, что в ближайшее время доверие к интеллектуальным технологиям, обеспечивающим безопасность, будет только расти, в том числе в частной среде. Преимущество ИИ в том, что он может фиксировать то, что упускает из вида человек, способен накапливать и анализировать большие объемы данных, генерировать шаблонные ситуации и оставаться беспристрастным и равнодушным в любой ситуации. Однако ученые уточняют, что полностью исключить человека из государственных структур, организующих безопасность населения, не получится. Существуют процессы и решения, требующие психологического анализа, подвластного только «живым» специалистам. В то же время умные машины могут взять на себя опасные функции. Например, обследовать горящее здание, прикрывать от пуль и т.д.

Технология – лучший друг человека. Искусственный интеллект в быту и в повседневной жизни

Уже не один год десятки инженеров работают над проектом «умного» дома. На искусственный интеллект хотят возложить обязанности по установлению температуры в помещении, автоматической регулировке освещения, открытию/закрытию въездных ворот, поддержанию чистоты и порядка и многие другие. Создатели ставят целью максимально упростить процесс управления и «общения» с высокоинтеллектуальным домом, чтобы алгоритмы запускались не от пульта или иного прибора удаленного контроля, а распознавали голос и жесты.

Параллельно с разработками «умного» дома, ученые тестируют интеллектуальных ассистентов, которые призваны создать человеку совершенный быт. Различные модели социальных роботов умеют определять комфортную для конкретного человека температуру окружающей среды и регулировать ее в помещении, поддерживать беседу, запоминать лица и выполнять указания.

Ожидается, что уже к 2030 году домашние роботы станут нормой. Полностью освободить человека от бытовых обязанностей они не смогут, но способны обеспечить наиболее благоприятные условия жизни, автоматизировать ряд базовых процессов, прогнозировать и предупреждать жилищно-коммунальные аварии, отвечать за безопасность имущества и т.д. Некоторые решения могут быть полезны для людей с ограниченными возможностями.

Искусственный интеллект в образовательном секторе

Современные технологии активно модернизуют систему образования. Например, в России в ряде столичных школ тестируют электронные журналы, которые предоставляют родителям информацию об успеваемости и посещаемости ребенка в режиме Онлайн, а для педагогов упрощают «бумажную» работу. В этом году в День учителя робот провел в тандеме с педагогом занятие по информатике в одном из казанских лицеев, что для нашей страны является уникальным событием.

Мир уже знаком с интеллектуальными образовательными системами, которые определяют уровень знания ученика, оценивают верность ответов и разрабатывают персонализированную программу обучения. В качестве примера можно назвать такие решения как AutoTutor, Knewton, SHERLOCK. Последняя используется в ВВС США для обучения пилотов. Достаточно хорошо проработаны ряд обучающих онлайн-платформ. В частности, знакомые в том числе и в России сервисы Coursera и Duolingo.

В сфере образования искусственному интеллекту отводят будущее. Он привлекателен тем, что способен создать для каждого обучающегося уникальный план развития, который учитывает способности и интересы ученика, и, следовательно, максимально эффективно реализует его потенциал. Также искусственный интеллект беспристрастен при оценивании знаний или проверке заданий. Роботы могут не только обучать автономно от учителя, но и помогать ему.

Ученые Лаборатории знаний Университетского колледжа Лондона прогнозируют, что в будущем у каждого человека будет свой обучающий наставник. Машинное обучение будет выявлять способности человека и давать рекомендации по обучению, находясь всегда «под рукой» через приложение на мобильном устройстве.

Искусственный интеллект в ф инансовом секторе

В банковской системе и финансовой сфере искусственный интеллект может стать как помощником, так и угрозой. Например, с помощью автоматических систем проще отслеживать финансовое мошенничество и подозрительные транзакции. Подобное решение тестирует MasterCard при поддержке National Savings Bank.

Также банки намерены использовать роботизированных сотрудников в работе с клиентами. Искусственный интеллект может обрабатывать запросы клиентов, информировать об услугах и возможностях, оказывать техническую поддержку. Шведский банк Swedbank протестировал искусственного ассистента еще в 2014 году. По словам представителей Swedbank, уже через год после запуска робот разрешал 80% всех поступающих в банк звонков.

Финансовые учреждения нашли применение искусственного интеллекта и в системе управления персоналом. Интеллектуальные технологии контролируют решения сотрудников, оперативно реагируя на неправомерные действия с их стороны, тем самым предупреждая нарушение законодательных норм по вине банка.

Летом 2016 года появилась информация, что финансовые организации Goldman Sachs, Morgan Stanley Citigroup и UBS Group инвестируют в разработки искусственного интеллекта для найма персонала. Среди возможностей такого решения называют отбор приемлемых резюме, оценку профессиональных качеств соискателей и организацию видеособеседований. Представители компаний надеются, что интеллектуальные технологии не только автоматизируют процесс найма, но и снизят текучесть кадров.

Разработчики приложений Pefin и Wallet.ai доверили онлайн-платформам личные финансы. Сервисы, принимая во внимание экономические показатели, например, уровень инфляции и размер налогов, строят индивидуальную финансовую систему, рассчитывая, сколько человек может потратить или инвестировать.

В этом году аналитические службы юридической компании Baker&McKenzie опубликовали результаты своего исследования, согласно которому в ближайшие три года искусственный интеллект начнет широко применяться в сфере финансов. Половина из 424 опрошенных руководителей банков заявили о планах внедрения интеллектуальных систем в работу учреждения, из них 39% - с целью предотвращения нелегальных денежных переводов, а 26% - для мониторинга правомерности действий банка.

Искусственный интеллект в транспортной системе

Главным направлением разработок искусственного интеллекта в транспортной инфраструктуре является создание беспилотных автомобилей. Активно тестирует подобные системы компания Google, Tesla, General Motors и другие. Автомобильные концерны Ford и BMW также озвучивают планы о выпуске самостоятельных автомобилей уже к 2021 году.

На данный момент беспилотные автомобили предусматривают алгоритмы, способные анализировать окружающую обстановку, распознавать нахождение человека на дороге и передавать управление водителю в экстренных ситуациях.


Также искусственный интеллект используют в «умных» остановках общественного транспорта, которые отслеживают движение транспорта на маршруте и рассчитывают приблизительное время его прибытия.

Четыре года назад инженеры Университета Карнеги запустили в эксплуатацию «умные» светофоры. Они оценивают ситуацию на дороге и автоматически включают зеленый цвет при скоплении автомобилей. По словам разработчиков, самоконтролируемые перекрестки показали свою эффективность: водители экономят 21% времени нахождения в пути, благодаря сокращению интервала ожидания разрешающего сигнала на 40%.

Специалисты полагают, что возможности искусственного интеллекта получат широкое применение в организации дорожного движения. К 2020 году на дорогах будет порядка 10 млн. беспилотных автомобилей, в том числе летающих. «Умный» транспорт будет популярен не только в частной сфере. Например, во Франции запустили самоуправляемый автобус. Ученые полагают, что такие устройства обезопасят дорожное движение, помогут избежать множества аварий и будут вести мониторинг ситуации на дороге в режиме Онлайн.

Искусственный интеллект в п ромышленности

Многие европейские фабрики уже используют роботизированные решения для автоматизации процессов производства. Это избавляет сотрудников от тяжелого и опасного производственного труда. Искусственный интеллект помогает избежать производственных ошибок, тем самым улучшая качество продукта и сокращая временные и материальные издержки на его изготовление, а также позволяет организовать беспрерывное производство.

Книжным примером коммерческих предприятий, внедривших искусственный интеллект в производственный процесс, является порт Гамбурга и Harley-Davidson. Первому удалось с помощью новейших технологий увеличить пропускную способность более чем в 2,5 раза. Второму – сократить время сборки мотоцикла с 21 дня до 6 часов.

В 2014 году компании Cisco, AT&T, IBM и Intel объединились в Консорциум Industrial Internet Consortium, IIC, который ставит своей целью продвижение IIoT-технологий и проектов. Примеров отечественных заводов, использующих интеллектуальные системы в рабочей среде, нет. Содействовать изменению ситуации призван образованный в августе этого года Национальный консорциум Промышленного интернета.

Искусственный интеллект в здравоохранении

IBM представило решение Watson. Оно представляет собой суперкомпьютер, который способен анализировать медицинские данные и даже изображения, чтобы ставить диагноз. Совершенствуя технологию, IBM обучает Watson обнаружению слабо выраженных признаков редких заболеваний у детей. Компания сотрудничает почти с двумя десятками медицинских центров, что должно ускорить широкое внедрение технологии в учреждения здравоохранения.

С помощью искусственного интеллекта планируют диагностировать рак на ранних стадиях. Разработчики Behold.ai сообщают, что средство излечения от указанного заболевания не будет иметь привычную форму медикаментов. Их цель – научить ИИ обнаруживать злокачественные опухоли по рентгеновским снимкам предельно рано, что не лечить, а предотвратить развитие болезни.

Аналогичным способом планируют диагностировать сердечные заболевания партнеры Bay Labs и Arterys. В основу технологии заложен анализ ультразвука, таким образом, «умное» оборудование способно увидеть то, что недоступно доктору.

Ученые заявляют, что в будущем здоровье человека будут сканировать смартфоны. На основе анализа активности, сна, общительности диагностировать даже психические отклонения, например, депрессию. Также искусственному интеллекту отводят роль исследования новых лекарственных препаратов. Алгоритмы будут обнаруживать уязвимые места вирусов и подбирать для их устранения эффективные комбинации молекулярных структур.

Побежденному творцу от превзошедшего интеллекта

Многие предсказания ученых об «умном» мире, оцифрованной жизни, роботах по соседству и цивилизации интернета вещей сегодня кажутся фантастичными. Но не зависимо от веры или сомнений в безграничных возможностях искусственного интеллекта , технологии динамично меняют все вокруг. Разработчики открытием за открытием, небольшими изобретениями и революционными идеями ведут планету в высокоинтеллектуальную машинную реальность.

Сложно назвать точные даты, когда плоды воображения писателей-фантастов обретут физическое воплощение. Прогрессировать нужно не только технологиям, но и человеку. Социум должен быть готов принять «железный» мир и интеллектуальную нацию устройств. На период адаптации нужно время. Чтобы люди начали доверять роботизированным полицейским, врачам и водителям, их искусственный интеллект должен быть равным человеческому. В то же время, сможет ли несовершенный человек создать совершенную систему? Сможет ли отследить ту грань, где искусственный интеллект – друг, а не опасность? И сможет ли избежать технической зависимости?

Параллельно возникает вопрос о готовности инфраструктуры к «искусственному» будущему. Достаточно ли энергетических мощностей? Очевидно, что для работы искусственного интеллекта , интернета вещей и облачных систем нужны бесперебойные источники питания и широкополосная глобальная мобильная сеть.


Более подробно с инновационными решениями в области мобильной связи существующих и новых поколений, а также с услугами настоящего и будущего можно ознакомиться в книге "

Что могут лишиться работы из-за автоматизации труда. Но мало кто задумывается о том, как эти технологии способны улучшить и облегчить работу человека. Вот несколько примеров.

Вы сможете быстрее и лучше искать работу и нанимать сотрудников

ИИ может значительно изменить процесс поиска кандидатов, считает Александр Ринке, сооснователь и глава компании Celonis. Искусственный интеллект Celonis позволяет определить текучку кадров и стоимость найма сотрудника, а также подсчитает, на какие должности приходится дольше всего искать работников. Например, один из клиентов Celonis смог обнаружить проблемы в найме, сократить расходы на рекрутинг на 30% и ускорить процесс трудоустройства новых сотрудников.

С помощью ИИ проще составлять резюме и получать приглашения на собеседования. Например, компания iCIMS совместно с Google разработала технологию, которая позволяет искать работу прямо в поисковике - а все благодаря машинному обучению и искусственному интеллекту Google.

По словам директора по маркетингу iCIMS Сьюзан Витейл, технология смогла сократить количество неактуальных публикаций о работе. Кроме того, она лежит в основе закрытой бета-программы Cloud Jobs Discovery. Эта программа ищет вакансии не только точно по ключевым словам - например, если человек ищет должность CTO, она покажет ему не только вакансии «технического директора», но и «директора по технологиям». Ее модель использует концептуальный поиск и показывает все смежные профессии (например, не только кассира, но и продавца-консультанта и менеджера магазина).

Вы будете работать продуктивнее

Джон Фарно, глава и соучредитель компании Hive, считает, что предиктивный анализ поможет лучше понимать, как мы работаем. «Он способен рассказать, например, кто активнее работает по вечерам - мужчины или женщины, или правда ли, что люди хуже работают по пятницам именно летом». Последнее, кстати, миф. Продуктивность по пятницам всегда ниже, независимо от времени года.

С помощью данных о более 30 тысячах действий, совершенных в коворкингах Hive, компании удалось определить некоторые закономерности в изменении продуктивности. Например, мужчины гораздо продуктивнее в первой половине дня, а после обеда их продуктивность резко снижается. У женщин все наоборот - их рабочий день начинается медленно, но ближе к концу работают продуктивнее. Кроме того, анализ чатов показал, что женщины способны выполнять больше заданий во время переписки.

«В частности ИИ поможет решить проблему разницу в зарплатах у мужчин и женщин, а также у руководства и рядовых сотрудников, - сказала Дженсен. - Согласно статистике, в компаниях из начала списка Fortune 500 эта разница может достигать почти 5000 к 1». Кроме того, использование технологий, определяющих честный размер выплат, снизит риск кадровой текучки и поможет сократить расходы на поиск замены сотрудника.

Улучшится качество совещаний

Дополненная реальность (AR) пока только развивается, но работает благодаря ИИ и машинному обучению. Криста Маннинг, вице-президент компании Bersin от Deloitte Consulting, считает, что AR может помочь в поиске нужной информации, места и времени для принятия важных бизнес-решений.

Например, эту технологию можно использовать на видеосовещаниях. «Представьте себе, что вы участвуете в видеоконференции и видите информацию в дополненной реальности о стиле общения коллеги, полезные советы и напоминание о том, что необходимо с ним обсудить», - рассказала Маннинг.

Появятся лучшие руководители

Платформа Indiggo использует собственный ИИ под названием indi, который выполняет функцию своеобразного мозга, обладающего всеми знаниями компании за 15 лет работы. Его алгоритм изучает размер руководящего состава фирмы и оценивает, сколько времени она потратила зря. Программа изучает календари каждого начальника, чтобы понять, на что он тратит свое время. Затем ИИ проводит специальный опрос среди некоторых менеджеров, чтобы узнать, какие у них приоритеты и насколько они соответствуют компании.

«Парадоксально, но все эти технологические новшества лишь подчеркивают незаменимость человеческого труда, - считает Александр Ринке, глава Celonis. - В конце концов, люди гораздо лучше выполняют задачи, которые подразумевают поиск причин, оценку и взаимодействие с другими людьми».

Вы, наверное, слышали про робота, который подходит и дает вам банку колы, когда говорите ему, что вы хотите пить. Вы также, наверное, слышали о системе распознавания речи, которая управляет вашей бытовой техникой? И вы, наверное, слышали о тренажерах самолетов, которые помогут воссоздать реальную среду полета воздушного аппарата?

В 1956 году всемирно известный американский ученый Джон Маккарти, ввел термин, который является сердцем всех этих возможностей и многих других. Термин, который он придумал был “Искусственный интеллект”. Искусственный интеллект, сокращенно ИИ – это наука и инжиниринг, работающие над созданием интеллектуальных машин, а также интеллектуальных компьютерных программ, которые способны реагировать как человек. То есть, создание таких машин, способных чувствовать мир вокруг них, понимать разговоры и принимать решения, похожие на человеческий выбор. Искусственный разум дал нам все, от сканера до роботов в реальной жизни.

Сегодня область искусственного интеллекта может быть описана, как суп когнитивной информатики, психологии, лингвистики и математики, ожидание вспышки молнии – попытка объединения усилий исследователей и ресурсов, разработка новых подходов, использование мировых хранилищ знаний, чтобы создать искру, такую, что она будет создавать новую форму жизни.

В области искусственного разума, мы взращиваем машину ребенка с детства к взрослой жизни, таким образом, что мы создаем чисто новые подходы к обучению машины.

Отрасли искусственного интеллекта

Джон Маккарти определил некоторые из ветвей ИИ, которые описаны ниже. Он также отметил, что несколько из них еще предстоит определить.

Логика Искусственного Интеллекта: программа ИИ должна знать о фактах и ситуациях.

Распознавание образов: когда программа проводит наблюдение, то, как правило, запрограммирована на распознавание и сопоставление с образцом. Например, система распознавания речи или система распознавания лица.

Представление: должен быть способ, чтобы представить факты о мире устройству обладающем ИИ. Для представления, используется математический язык.

Вывод: умозаключение, позволяет извлекает новые факты из уже существующих фактов. Из некоторых фактов могут быть выведены другие.

Планирование: программа планирования начинается с фактов и изложения цели. Из них, программа генерирует стратегию для достижения поставленной цели.

Наличие Здравого Смысла и Рассуждения - это активное направление исследований и изучения ИИ возникло в 1950-х годах, но все же пока результат далек от человеческого уровня.

Эпистемология – это возможность обучения и получения знаний устройством. Позволяет изучать типы знаний, необходимых для конкретного типа задач.

Эвристика – это способ попытаться найти идею вложенную в программу.

Генетическое программирование – автоматическое создание программы LISP (Обработка списка), позволяющее решить поставленную задачу.

Инструменты, использующиеся для решения сложных задач при создании ИИ

За последние шесть десятилетий, существуют различные инструменты, разработанные для решения сложных проблем в области компьютерных наук. Некоторые из них являются:

Поиск и оптимизация

Большинство проблем в ИИ могут быть решены теоретически с помощью грамотного поиска возможных решений. Но простой исчерпывающий поиск редко бывает полезным и достаточным для большинства реальных задач. В 1990-е годы, различные виды поиска стали популярны, которые были основанные на оптимизации. В случае большинства проблем, можно составить предположение, а затем уточнить свой запрос. Различные алгоритмы оптимизации были написаны, чтобы помочь процессу поиска.

Логика

Логика позволяет производить изучение аргументов. В ИИ используется для представления знаний, а также использоваться для решения задач. Различные типы логики используются в исследованиях искусственного интеллекта. Логика первого порядка использует кванторы и предикаты, и помогает в представлении фактов и их свойств. Нечеткая логика является своего рода логикой первого порядка, что позволяет найти истинность заявления, которое будет представлено как 1 (истина) или 0 (False).

Теория вероятности

Вероятность – способ выражения знания. Это понятие было дано математическому значению в теории вероятностей, которая широко используется в ИИ.

Искусственный интеллект и его применение

Искусственный интеллект в настоящее время используется в широком спектре областей, включая моделирование, робототехнику, распознавание речи, финансы и акции, медицинскую диагностику, авиацию, безопасность, игры и т.д.

Разберем поподробней некоторые из областей:

Игровая Сфера: Существуют машины, которые могут играть в шахматы на профессиональном уровне. ИИ также применим к различным видеоиграм.

Распознавание речи: Компьютеры и роботы, которые понимают язык на уровне человека имеют встроенный ИИ в них.

Симуляторы: Моделирование является имитация какой-то реальной вещи. Оно используется во многих контекстах, начиная от видеоигр, заканчивая авиацией. Тренажеры включают в себя симуляторы полета для летчиков, с помощью которых ведется подготовка к пилотированию «воздушного корабля».

Робототехника: Роботы стали обычным явлением во многих отраслях промышленности, так как роботы оказались более эффективными, чем люди, особенно на повторяющихся рабочих местах, где люди имеют тенденцию терять концентрацию.

Финансы: Банки и другие финансовые учреждения полагаются на интеллектуальные программные обеспечения, которые обеспечивают точный анализ данных и помогает делать предсказания, основываясь на этих данных.

Медицина: Системы искусственного интеллекта используются в больницах, чтобы управлять расписанием больных, обеспечивать ротацию персонала, а также предоставлять медицинскую информацию. Искусственная нейронная сеть, которая представляет собой математическую модель, вдохновленной структурой и/или функциональными аспектами биологических нейронных сетей, помогает в медицине при определении диагноза.

Искусственный разум находит использование в различных областях и приложениях. Системы безопасности, системы распознавания текста и речи, интеллектуальный анализ данных, фильтрация электронной почты от спама и огромное количество других примеров. Британская телекоммуникационная группа применила эвристический поиск в приложении планирования, который составляет графики работы свыше двадцати тысяч инженеров. Применение ИИ также нашло место в сфере грузоперевозок, где нечеткие логические контроллеры были разработаны для автоматических коробок передач в автомобилях.

Проблемы, с которыми сталкиваются создатели искусственного интеллекта

За последние шесть десятилетий, ученые активно работают над имитацией интеллекта человека, но рост замедлился из-за многих проблем при моделировании искусственного разума. Некоторые из этих проблем являются:

База знаний: количество фактов, которые знает человек просто слишком много. Подготовка базы данных, которая будет содержать все знание этого мира является огромной трудоемкой задачей.

Вычет, рассуждения и решения проблем: ИИ должен шаг за шагом решать любую проблему. Как правило, люди решают проблемы на основе интуитивных суждений, а затем составляют план действий, программу. Искусственный интеллект делает медленный прогресс, чтобы имитировать человеческий метод решения проблем.

Обработка естественного языка: Естественный язык – это язык на котором говорят люди. Одной из основных проблем, с которыми сталкивается ИИ, это распознавание и понимание что говорят люди.

Планирование: Планирование, как правило, ограничивает только людей, потому что они могут думать. Умение планировать и думать, как человек, необходимо для интеллектуальных агентов. Как и люди, они должны иметь возможность визуализировать будущее.

Положительные стороны применения ИИ

Уже сейчас мы можем видеть небольшие применения искусственного разума в нашем доме. Например, смарт-телевизор, умный холодильник и т.д. В будущем в каждом доме будет присутствовать ИИ. Искусственный интеллект с нанотехнологиями или другими технологиями может привести к появлению новых отраслей в области науки. Наверняка, развитие искусственного интеллекта приведет к тому, что он станет частью нашей повседневной жизни. Уже сейчас происходит замена людей на роботов на некоторых рабочих местах. В военной отрасли искусственный разум позволит создавать различное современное вооружение, например роботов, которые сократят смертность при возникновении войн.

Отрицательные стороны применения ИИ

Несмотря на то, что искусственный интеллект, имеет множество преимуществ, существуют очень много недостатков.
На более базовом уровне, использование искусственного разума в повседневных задачах может привести к образованию лени со стороны человека, и это может привести к деградации основной массы народа.

Применение искусственного интеллекта и нанотехнологий в военной отрасли конечно имеет много положительных сторон, например создание идеального защитного щита от любых атак, но так же существует темная сторона. С помощью искусственного разума и нанотехнологий мы сможем создавать очень мощное и разрушительное оружие и при неосторожном использовании оно может привести к необратимым последствиям.

Массовое применение искусственного интеллекта приведет к сокращению рабочих мест для людей.

Кроме того, быстрые темпы развития и применения искусственного интеллекта и робототехники может подтолкнуть Землю к экологической катастрофе. Даже сейчас отходы компьютерных комплектующих и других электронных устройств оказывают огромный вред нашей планете.

Если мы дадим разум машинам, они смогут использовать его по максимуму. Машины с интеллектом станут умнее своих создателей и это может привести к исходу, который продемонстрирован в серии фильмах «Терминатор».

Заключение и будущее применение

Искусственный интеллект – область, в которой продолжаются множество исследований. Искусственный разум является отраслью компьютерной науки о понимании природы интеллекта и построения компьютерных систем, способных на разумные действия. Несмотря на то, что люди имеют интеллект, они не в состоянии использовать его в максимально возможной степени. Машины будут иметь возможность использовать 100% своего интеллекта, если мы дадим им этот разум. Это является преимуществом, а также недостатком. Мы зависимы от машин практически для любого применения в жизни. Машины теперь являются частью нашей жизни и используются везде. Таким образом, мы должны знать больше о машинах и должны быть осведомлены о будущем, что может случиться, если мы дадим им разум. Искусственный интеллект не может быть плохим или хорошим. Он меняется в пути использования его нами.

Рассказать друзьям