Базовые технологии мультисервисных сетей. Эксплуатация мультисервисных сетей

💖 Нравится? Поделись с друзьями ссылкой

Рост популярности мультисервисных сетей связи - одна из самых заметных тенденций российского рынка телекоммуникационных услуг в последние годы. Услуги такой сети в первую очередь предназначены для компаний, ориентированных на интенсивное развитие бизнеса, оптимизацию затрат, автоматизацию бизнес-процессов, современные методы управления и обеспечение информационной безопасности. Наиболее эффективное применение мультисервисные сети могут найти у традиционных телекоммуникационных операторов, которые таким образом значительно расширяют гамму предоставляемых услуг. Для корпоративного рынка объединение всех удаленных подразделений в единую мультисервисную сеть на порядок увеличивает оперативность обмена информацией, обеспечивая доступность данных в любое время. Благодаря возможности обмениваться большими объемами данных между офисами можно устраивать селекторные совещания и проводить видеоконференции с отдаленными подразделениями. Все это ускоряет реакцию на изменения, происходящие в компании, и обеспечивает оптимальное управление всеми процессами в реальном масштабе времени.

Мультисервисная сеть представляет собой универсальную многоцелевую среду, предназначенную для передачи речи, изображений и данных с использованием технологии коммутации пакетов (IP). Она отличается надежностью, характерной для телефонных сетей (в противоположность негарантированному качеству связи через Интернет), и обеспечивает низкую стоимость передачи в расчете на единицу объема информации (приближающуюся к стоимости передачи данных по Интернету). Вообще говоря, основная задача мультисервисных сетей заключается в том, чтобы обеспечить работу разнородных информационных и телекоммуникационных систем и приложений в единой транспортной среде, когда для передачи и обычного трафика (данных), и трафика другой информации (речи, видео и т. д.) используется единая инфраструктура.

Мультисервисная сеть открывает массу возможностей для построения многообразных наложенных сервисов поверх универсальной транспортной среды - от пакетной телефонии до интерактивного телевидения и Web-сервисов. Сеть нового поколения имеет следующие особенности:

  • универсальный характер обслуживания разных приложений;
  • независимость от технологий услуг связи и гибкость получения набора, объема и качества услуг;
  • полная прозрачность взаимоотношений между поставщиком услуг и пользователями.

Интеграция трафика разнородных данных и речи позволяет качественно повысить эффективность информационной поддержки управления предприятием; при этом использование интегрированной транспортной среды снижает издержки на создание и эксплуатацию сети. Мультисервисная сеть, используя единый канал для передачи данных разных типов, дает возможность уменьшить разнообразие типов оборудования, применять единые стандарты и технологии, централизованно управлять коммуникационной средой. Мультисервисные сети поддерживают такие виды услуг, как телефонная и факсимильная связь; выделенные цифровые каналы с постоянной скоростью передачи; пакетная передача данных (FR) с требуемым качеством сервиса; передача изображений, видеоконференцсвязь; телевидение; услуги по требованию (On-Demand); IP-телефония; широкополосный доступ в Интернет; сопряжение удаленных ЛВС, в том числе работающих в различных стандартах; создание виртуальных корпоративных сетей, коммутируемых и управляемых пользователем.

Надо отметить, что мультисервисные сети - это скорее технологическая доктрина или новый подход к осознанию сегодняшней роли телекоммуникаций, основанный на понимании того, что компьютер и данные сегодня выходят на первое место по сравнению с речевой связью. Эта модель бизнеса, построенная на основе широкополосных сетей связи следующего поколения, позволяет предоставлять очень широкий набор услуг и дает гибкие возможности создавать их, управлять ими и персонализировать. Основные отличия таких сетей состоят в следующем:

  • возможность передачи большому количеству пользователей в реальном времени очень больших объемов информации с необходимой синхронизацией и с использованием сложных конфигураций соединений;
  • интеллектуальность (управление услугой, вызовом и соединением со стороны пользователя или поставщика сервиса, раздельная тарификация и управление условным доступом);
  • инвариантность доступа (организация доступа к услугам независимо от используемой технологии);
  • комплексность услуги (возможность участия нескольких провайдеров в предоставлении услуги и разделение их ответственности и дохода сообразно с видом деятельности каждого).

Основные проблемы, ограничивающие сегодня распространение широкополосного доступа, а значит, и внедрение мультисервисных сетей, заключаются в том, что это требует значительных инвестиций в отрасль. Кроме того, в нашей стране отсутствует мощная многогигабитная магистральная инфраструктура и слабо развиты абонентские сети. Необходимо полное изменение бизнес-модели для операторов, а огромная территория и неравномерность расселения требуют внимательного подбора технологий (и их комбинации) в зависимости от географии и населенности конкретного региона. Не следует забывать и о "пиратстве", а также обеспечении прав владения через IP. Ведь борьба с мошенничеством требует бизнес-модели, основанной на продаже контента, со сложными системами управления, контроля доступа и тарификации.

Круг потенциальных пользователей мультисервисных сетей весьма широк. Это, во-первых, бизнес-центры, фирмы, расположенные в одном здании. Корпоративным клиентам необходимо множество телефонных линий, высокоскоростной доступ в Интернет, системы аудио- и видеоконференцсвязи, сигнализации и телеметрии. Это также крупные холдинги, имеющие территориально удаленные филиалы и подразделения, это компании, использующие удаленные автоматические терминалы (банкоматы, торговые автоматы). Это системы телемедицины разного уровня и компании мобильной связи, распределенные офисы, коммутационные центры и базовые станции которых также могут подключаться к единой мультисервисной сети.

Базовыми понятиями для мультисервисных сетей выступают QoS (Quality Of Service) и SLA (Service Level Agreement), т. е. качество обслуживания и соглашение об уровне (качестве) предоставления услуг сети. Переход к новым мультисервисным технологиям изменяет саму концепцию предоставления услуг, когда качество гарантируется не только на уровне договорных соглашений с поставщиком услуг и требований соблюдения стандартов, но и на уровне технологий и операторских сетей. Архитектурно в структуре мультисервисной сети можно выделить несколько основных уровней: магистральный, уровень распределения и агрегирования и уровень доступа. Магистральный уровень представляет собой универсальную высокоскоростную и по возможности однородную платформу передачи информации, реализованную на базе цифровых телекоммуникационных каналов. Уровень распределения включает узловое оборудование сети оператора, а уровень агрегирования выполняет задачи агрегации трафика с уровня доступа и подключения к магистральной (транспортной) сети. Уровень доступа включает корпоративные или внутридомовые сети, а также каналы связи, обеспечивающие их подключение к узлу (узлам) распределения сети.

Мультисервисные сети можно строить на базе самых разных технологий, как на платформе IP (IP VPN), так и на основе выделенных каналов связи. На магистральном уровне наиболее популярны сегодня технологии IP/MPLS, Packet over SONET/SDH, POS, ATM, xGE, DWDM, CWDM, RPR. Реально большая часть магистральных мультисервисных сетей сегодня строится на основе технологий POS, DWDM, которые получили заметное распространение в России, а также IP/MPLS, которые считаются особенно перспективными при значительной широте охвата и большом числе потребителей.

Технология MPLS

Основой технологии многопротокольной коммутации по меткам - MPLS (MultiProtocol Label Switching) послужили разработки компаний Ipsilon (IP Switching), Cisco (Tag Switching) и IBM (ARIS), а также предложения ряда разработчиков, направленные на создание средств управления трафиком в неориентированных на соединение сетях, к которым, как известно, относятся и IP-сети. Последние на сегодняшний день остаются главным объектом приложения технологии MPLS, поскольку стали магистральным направлением развития корпоративной и глобальной телекоммуникационной инфраструктуры. Некоторые эксперты даже считают, что современное состояние данной технологии позволяет называть ее IPLS, т. е. IP-коммутация по меткам.

Технология MPLS часто используется для построения виртуальных корпоративных IP-сетей (IP VPN) на третьем уровне ЭМВОС ("Эталонная модель взаимодействия открытых систем") в соответствии со спецификациями RFC 2547. В таких сетях каждому IP-пакету присваивается специальная метка, определяющая его маршрут и приоритет. В результате операторы телекоммуникационных сетей могут предоставлять в IP VPN такие классы обслуживания (CoS), которые дают возможность использовать их для транспорта изохронного трафика, например, телефонного. Операторы, внедрившие MPLS в своих сетях, а также представители компании Cisco утверждают, что уже сегодня технология MPLS превращает контролируемые оператором IP-сети в надежную, предсказуемую и управляемую инфраструктуру, не уступающую по этим параметрам сетям АТМ и Frame Relay (FR).

Основная идея разработчиков технологии MPLS заключалась в создании механизмов, обеспечивающих ускоренную передачу пакетов по наименее загруженным маршрутам IP-сети. При этом, в отличие от постоянных виртуальных каналов (PVC) сетей ATM и FR, которые жестко фиксируются, коммутируемые по меткам пути (Label Switched Path, LSP) могут меняться в зависимости от состояния сети и загруженности отдельных ее узлов или каналов. Таким образом, с помощью MPLS решается проблема непредсказуемости задержек в IP-сети.

Рассмотрим коротко принцип работы технологии коммутации по меткам в сетях, отвечающих спецификациям RFC 2547. В точке входа в такую сеть пограничные маршрутизаторы (коммутаторы) - обычно их называют Label Edge Router (LER) или Provider Edge router (PE) - определяют, какие услуги третьего уровня модели ЭМВОС необходимы входящим IP-пакетам (например, предоставление QoS или управление полосой пропускания). В зависимости от этих требований, а также с учетом пункта назначения устройства маркируют IP-пакеты специальными метками. Действия, требующие больших процессорных мощностей (анализ, классификация и фильтрация), выполняются только один раз, в точке входа. Опорные устройства сети MPLS - обычно их называют Label Switch Router (LSR) или Provider router (P) - продвигают пакеты только на основе меток и не анализируют заголовки IP-пакетов. В точке выхода из MPLS-сети метки удаляются.

При перемещении пакета по сети опорные устройства составляют таблицы маршрутизации, связывающие пакеты и указанный маршрут с метками. LSR считывают метки каждого пакета и заменяют их новыми в соответствии со своей таблицей маршрутизации. Затем пакеты передаются дальше. Эта операция повторяется при прохождении каждого LSR. Все пакеты, имеющие одинаковые метки, передаются по одному LSP. При этом, как уже упоминалось, в зависимости от состояния и загруженности сети LSP могут проходить по разным маршрутам.

На сегодняшний день технология MPLS наиболее широко применяется для построения виртуальных корпоративных IP-сетей. От других способов создания VPN (например, на базе ATM/FR или IPSec) она отличается легкостью добавления новых узлов виртуальной сети и естественной совместимостью с другими IP-сервисами, которые все чаще находят спрос у корпоративных пользователей, - это доступ в Интернет, электронная почта, хостинг и аренда приложений. Технология MPLS решает еще одну очень важную для корпоративного пользователя задачу - она, подобно технологиям ATM и FR, позволяет четко обособлять друг от друга виртуальные корпоративные IP-сети.

Классы решений в области OSS/BSS-систем

При большом числе пользователей в мультисервисной сети необходима сложная и интеллектуальная система управления. В сети одновременно передается множество разных видов трафика, причем для каждого из них требуется безусловное соблюдение одних параметров, но допускаются более или менее серьезные уступки по другим, следовательно, не обойтись без специализированных средств, не допускающих перегрузки сети и нарушения требуемого качества. Сеть должна самостоятельно устранять перегрузки, автоматически решая, чем можно пожертвовать в разных случаях - шириной полосы пропускания, временем доставки или (для отдельных потоков) целостностью информации.

При игнорировании требований управляемости и мониторинга состояния владельцы сети могут столкнуться с серьезными трудностями, сопровождающимися критичными для бизнеса сбоями и серьезными финансовыми потерями. Чтобы предоставлять новые услуги, обеспечивать их необходимое качество, правильно их распределять и маршрутизировать, очень важно, чтобы без ошибок принимались все необходимые данные, вне зависимости от технологии и типа оборудования. В качестве систем мониторинга и управления сетью используются средства диагностики, представляющие собой мощные инструменты (функции анализа протоколов, контроля плана маршрутизации и т. п. в современных коммутаторах), а также программные системы OSS/BSS (Operation Support Systems/Business Support Systems).

Некоторые эксперты полагают, что, несмотря на кажущуюся новизну области OSS, сами принципы, концепции и понятия, связанные с этими системами, отнюдь не новы. Системы поддержки функционирования предприятий связи (OSS) представляют собой существенное расширение давно известной концепции построения глобальных систем управления TMN (Telecommunications Management Network), очень популярной в 90-е годы. Прогресс в области компьютеров, развертывание компьютерных сетей, переход к высокоскоростным системам передачи и коммутации, создание значительных информационных ресурсов развитых стран - все это кардинально преобразило современный деловой мир. По мере того как часть функций управления и обслуживания деятельности предприятий перекладывалась на плечи машин, формировалась концепция глобальной системы управления предприятиями - BSS, в основу которой легли различные методы оптимизации процессов на предприятии. Однако данная концепция не была чисто телекоммуникационной, поскольку для нее не имеет значения, о каких процессах идет речь, важна лишь их оптимизация. Поэтому системы BSS начали внедряться во многих отраслях современной экономики, оптимизируя банковскую сферу, транспортные издержки, поставки сырья и т. п. Усиление централизованного контроля, неизбежное при внедрении BSS, как нельзя лучше отвечает специфике современной глобализации и укрепления роли транснациональных компаний, для управления которыми потребовались автоматизированные системы, - и концепция BSS оказалась весьма кстати.

Для управления технологией, устройствами передачи и коммутации, сегментами сетей, ресурсами оператора была сформулирована концепция TMN, цель которой заключалась в повышении эффективности работы сети, а не операторской компании как предприятия. Разработчики систем управления в телекоммуникациях объединили задачи управления бизнесом и управления сетью. Так на стыке двух задач родилась концепция OSS, которая, с одной стороны, содержала все наработки TMN, с другой - обеспечивала жесткую экономическую связку BSS/OSS, с третьей - добавляла к ним новые тенденции, опыт и некоторые качественные дополнения, которые всегда сопутствуют синтезу двух независимых идей.

Современные системы OSS/BSS содержат множество модулей (классов) и подсистем, направленных на решение различных бизнес-задач. Сочетание разных классов с корпоративными информационными системами (CRM, HelpDesk и т. д.) обеспечивает необходимую функциональность для решения конкретных вопросов.

Mediation Device (Уровень сопряжения) позволяет интегрировать OSS/BSS-решения с разнородным активным оборудованием разных производителей. Уровень сопряжения обеспечивает надежное двустороннее взаимодействие между всеми элементами информационно-технической инфраструктуры вне зависимости от их сложности и степени разнородности. Уровень сопряжения служит основой построения любой современной системы управления сетью. Без него невозможно полноценное функционирование других классов OSS/BSS-решений, реализующих более высокие уровни иерархии управления телекоммуникационными ресурсами.

Inventory Management (Управление инвентаризацией) - это единое хранилище данных обо всех аспектах функционирования телекоммуникационной сети. Inventory Management представляет собой мощное и удобное средство для оперативного и эффективного управления инвентаризацией телекоммуникационных ресурсов компании. Вся информация инфраструктурного характера представлена здесь в широком спектре форматов, что позволяет интегрировать решение с другими информационными системами. В режиме реального времени персонал компании может в соответствии с делегированными ему правами доступа отслеживать и изменять топологию сети, настраивать конфигурацию физического оборудования, планировать и управлять логическими ресурсами сети.

Performance management (Управление производительностью) - этот класс решений улучшает производительность и эффективность работы телекоммуникационных сетей и информационных систем. Решения класса Performance Management оптимизируют конфигурацию сети, распределяют нагрузку между различными ресурсами и способствуют планированию развития сети. Внедрение решений для управления производительностью позволяет получить максимальную отдачу от текущих и будущих инвестиций. Благодаря оптимальному использованию ресурсов растет доходность инвестиций (ROI) и уровень дохода в расчете на одного клиента или пользователя сети.

Routing Management (Управление маршрутной информацией в IP-сетях) - мониторинг процессов маршрутизации в сети, сопряженный со сбором, обработкой и хранением информации о состоянии процессов маршрутизации. Обработка информации происходит в реальном времени, что позволяет контролировать состояние маршрутизации в сети, анализировать ее поведение по историческим данным и прогнозировать состояние маршрутизации в различных условиях.

Fault Management & Trouble Ticketing (Регистрация и управление неисправностями) - это решение эффективно управляет процессом поиска и исправления неисправностей. Функциональные возможности решения обеспечивают полную поддержку жизненного цикла устранения неисправностей: подбирается, систематизируется и хранится информация о каждой возникшей проблеме, о способах и этапах ее решения, о текущем состоянии дел. Внедрение решения Trouble Ticketing значительно сокращает сроки ремонтных работ в сети. При этом система предоставляет руководству и персоналу расширенные средства составления отчетов. Решения класса Fault management относятся к так называемым зонтичным системам управления, они обеспечивают двустороннее взаимодействие с автономными системами управления активным оборудованием разных поставщиков. Данный класс решений позволяет создать интегрированную систему управления, включающую решения для HelpDesk и CRM, что существенно упрощает управление телекоммуникационными ресурсами компании и их обслуживание, а также уменьшает совокупную стоимость владения.

Order Management (Управление заказами) - решение применяется для поддержки бизнес-процессов телекоммуникационных услуг любого типа: фиксированная связь, передача данных, беспроводная связь, IP и интегрированные речевые услуги. Система отслеживает все этапы исполнения заказа на протяжении всего его жизненного цикла. Одновременно она может создавать детальные отчеты о каждом этапе выполнения заказа, а также о процессе обработки заказов в целом. Решение для управления заказами позволяет управлять как внешними, так и внутренними услугами. При этом поддерживается ссылка на источник заказа или на пункт его назначения (доставки). Источник заказа может располагаться на стороне клиента, например, в случае активации услуги. В его роли может выступать также внутренний отдел компании.

Fraud Management (Борьба с мошенничеством) - это решение предназначено для операторов связи, и его основные функции заключаются в обнаружении, пресечении и упреждении случаев мошенничества с ресурсами оператора. Система отслеживает нарушителя с помощью механизмов и алгоритмов, специально разработанных для разных типов соединений и услуг, и реагирует на случаи вызова подозрительного номера, несуществующего пользователя, вызова с превышением порога стоимости или продолжительности, а также на иные виды и типы мошенничества. Комплексная система борьбы с мошенничеством не только своевременно информирует оператора о запросе недобросовестного клиента, но и способствует выявлению закономерностей в действиях мошенников. Это решение позволяет выработать механизм защиты от мошенничества, а также оптимально распределить задачи между аналитиками и другим персоналом компании. Если организовать взаимодействие решения Fraud Management с CRM-системой, то обнаружить и предотвратить мошенничество удается в самые короткие сроки. Это создает безопасную среду для внутренних и внешних пользователей услуг.

SLA management (Управление уровнем сервиса) обеспечивает компании повышение доходов за счет оперативного мониторинга информационных сервисов, предоставляемых внешним и внутренним пользователям. Объективный и своевременный контроль качества услуг избавляет оператора от выплаты компенсаций клиентам в связи с нарушением соглашения об уровне сервиса (Service Level Agreement). Документ содержит показатели работы сети и информационной системы, которые задают необходимый уровень качества сервиса. Если соглашение заключено с внутренним ИТ-подразделением, предприятие гарантирует нормальное функционирование бизнес-процессов внутри компании. Класс решений SLA Management можно интегрировать с CRM-системами, биллинговыми системами или специализированными решениями для отделов продаж. Бесшовная интеграция обеспечивает быстрое обновление изменений, вносимых в контракт с клиентом.

Network&Service Provisioning Management (Управление планированием и развитием услуг) - этот класс решений позволяет компаниям эффективно управлять процессом планирования и развития предоставляемых услуг. Прогнозирование различных путей развития событий и моделирование разнообразных сценариев типа "что, если?" призваны помочь компаниям добиться максимально возможной степени готовности услуги, прежде чем начать ее предоставление клиентам. Определив степень готовности услуги и эффект от ее применения, компания не только удовлетворяет потребности пользователей сети и формирует устойчивую группу лояльных клиентов или довольных сотрудников - она, в конечном счете, укрепляет свои позиции на рынке и получает дополнительные возможности увеличения доходов. Решения Network&Service Provisioning Management, независимо от сложности и степени разнородности сетевой инфраструктуры, обеспечивают надежное, быстрое и безопасное двустороннее взаимодействие между решениями других классов (такими, как Inventory Management и SLA Management, программно-аппаратным комплексом и элементами сети).

WorkFlow Management (Управление совместной работой) - это решение позволяет эффективно управлять различными командами сотрудников, которые территориально распределены и обслуживают большое число клиентов. Решение класса WorkFlow Management обеспечивает коммуникации между всеми участниками процесса предоставления услуг, мониторинг и составление отчетов в режиме реального времени. При интеграции решений класса WorkFlow Management с другими решениями на базе OSS/BSS-систем круг решаемых задач можно существенно расширить. Таким образом, перед руководством предприятия открывается возможность управлять планами работ, автоматически распределять задачи между исполнителями и гибко назначать менеджеров и членов групп технического обслуживания.

Аналитики различают несколько возможных способов построения OSS/BSS-решения на предприятии. Так или иначе, каждый вариант сводится к интеграции различных классов OSS/BSS с другими информационными системами и/или классами. Это может быть Fault Management &Trouble Ticketing + SLA Management + CRM, или Fraud Management + биллинговая система + СRM, или другие способы. Каждая комбинация обеспечивает решение определенного класса наиболее критичных для заказчика бизнес-задач. Выбор делается на основе комплексного анализа всех бизнес-процессов компании. Таким образом, OSS - это всегда комплекс продуктов, многие из которых настраиваются с учетом нужд конкретного заказчика. Однако это не разрозненный набор деталей, а интегрированная система, что достигается благодаря работе квалифицированных инженеров компании-интегратора при ее внедрении.

Защита от мошенников

По оценкам экспертов, несмотря на постоянное совершенствование технологий связи, потери от мошенничества в телекоммуникационных компаниях достигают 3-10% от общего оборота. Примечательно, что для большинства организаций этот показатель колеблется в пределах 5-7%. Один из наиболее важных классов OSS/BSS-системы - решения Fraud Management (дословно - "управление мошенничеством"). В задачи модуля Fraud Management, предназначенного в первую очередь для операторов связи, входит обнаружение, пресечение и предотвращение случаев несанкционированного доступа к ресурсам оператора. Система, оснащенная средствами мониторинга для различных типов соединений, реагирует в случае вызова подозрительного номера, несуществующего пользователя или несанкционированного доступа к услугам. Средствами Fraud Management строится профиль каждого абонента (частота, длительность звонков, время их совершения, основные направления вызовов и т. д.), после чего система сопоставляет полученные усредненные параметры с текущими и передает документированную аналитику по конкретной ситуации с рекомендациями касательно последующих действий. Подобное решение позволяет не только оперативно предотвратить все случаи несанкционированного использования ресурсов оператора связи, но и выработать на основе проведенного анализа определенный механизм защиты. Эксперты также отмечают, что тесная интеграция Fraud Management с CRM-решением позволяет максимально оперативно и эффективно построить защиту от мошенничества.

Некоторые решения

Системы управления и мониторинга телекоммуникационных сетей - это дорогая, но надежная альтернатива ручному труду множества сетевых инженеров, т. е. тому подходу, который был принят в российских компаниях до недавнего времени. К примеру, российский системный интегратор и поставщик ИТ-решений, компания "Энвижн Груп" (http://www.nvisiongroup.ru), предлагает внедрение решений, обеспечивающих полномасштабное управление сетями любого масштаба и конфигурации, в которые входят:

  • управление сбоями/событиями (Fault management);
  • управление конфигурациями (Configuration management);
  • сбор статистической/биллинговой информации (Accounting management);
  • контроль производительности (Performance management);
  • контроль безопасности (Security management).

Создание систем OSS - одно из основных направлений деятельности "Энвижн Груп". Российские операторы связи пока только начинают осознавать необходимость таких систем, но интегратор уже готов предложить спектр тщательно отобранных продуктов, позволяющих создавать комплексные и специализированные решения, учитывающие особенности каждого заказчика. "Энвижн Груп" занимается внедрением систем управления информационной инфраструктурой на базе решений компаний Micromuse (IBM), HP, InfoVista, MetaSolv, Dorado, Packet Design и Cisco Systems.

Магистральная сеть передачи данных в Казахстане

В декабре 2005 г. "Энвижн Груп" объявила о завершении проекта создания магистральной сети передачи данных (МСПД) на базе технологий IP/MPLS для компании АО "Казахтелеком" - национального оператора связи Казахстана. Построение магистральной сети нового поколения, позволяющей предоставлять полный спектр современных услуг, - важнейшая часть масштабной программы создания в Казахстане высокоскоростной сети передачи данных, которую реализует "Казахтелеком". Новая МСПД стала единой транспортной средой для передачи разнотипного IP-трафика, включая передачу данных, голоса (телефонный трафик), мультимедийных, видео- и других данных в электронном виде. Сеть предназначается для бесперебойной передачи данных между опорными узлами в 17 городах - Актобе, Кустанае, Петропавловске, Кокчетау, Астане, Павлодаре, Семей, Усть-Каменогорске, Талды-Кургане, Алма-Ате, Таразе, Чимкенте, Кзыл-Орде, Караганде, Атырау, Актау, Уральске. В качестве первичной транспортной сети для МСПД использовалась существующая оптическая сеть SDH.

Для построения сети с соответствующей функциональностью, производительностью, отказоустойчивостью и уровнем готовности, масштабируемости, безопасности и качества обслуживания, а также с целью максимально эффективного использования ограниченных ресурсов оператора "Энвижн Груп" использовала решение следующей архитектуры:

  • транспортное ядро на базе технологии DPT, обеспечивающее полную отказоустойчивость и высокое быстродействие;
  • ядро IP/MPLS на логическом уровне с поддержкой виртуальных частных сетей, качества обслуживания и механизмов управления трафиком для быстрого и безопасного развертывания сервисов;
  • Cisco 12006 GSR в качестве решения для узлов в Астане, Алма-Ате и Актобе и маршрутизаторы Cisco 7206 в качестве опорных маршрутизаторов в остальных узлах сети.

Сегодня мультисервисная IP/MPLS-сеть нового поколения уже работает. В рамках контракта обеспечена круглосуточная техническая поддержка оборудования сети, а также проведено техническое обучение специалистов "Казахтелекома". Внедрение в эксплуатацию МСПД позволило АО "Казахтелеком" значительно расширить спектр коммерческих услуг на территории страны, повысить их качество, что в дальнейшем, по мнению заказчика, привлечет новых клиентов.

По замыслу руководства "Казахтелекома", на следующих этапах развития телекоммуникационной инфраструктуры страны предполагается построение в городах страны сетей Metro Ethernet и объединение их с построенной "Энвижн Груп" МСПД. Эти проекты уже реализуются, в некоторых из них также принимает участие "Энвижн Груп" (в частности, в прошлом году был реализован проект построения сети доступа на базе технологии Metro Ethernet в Петропавловске). Кроме того, планируется полномасштабное внедрение современных технологий управления сетью.

Качество работы IP-сетей в значительной степени определяется эффективностью схем маршрутизации. Разработка таких схем и управление ими - исключительно сложная задача, поскольку приходится учитывать и топологию сети, и параметры каналов связи, и существенные различия в обработке разных типов трафика. Сложность возрастает еще и потому, что все эти параметры динамически меняются во времени из-за изменения нагрузки на сеть, возможного выхода из строя оборудования и множества других факторов. Соответственно, ошибки в схеме маршрутизации могут снизить производительность, надежность и живучесть сети, даже если ее технические элементы будут исправны.

Система управления маршрутизацией в IP-сетях Route Explorer компании Packet Design (http://www.packetdesign.com) резко упрощает управление телекоммуникационными сетями на базе протокола TCP/IP. Она не имеет аналогов в мире и полезна всем операторам связи, да и практически любым предприятиям среднего и крупного бизнеса. Данная система занимает исключительное место в системе управления ИТ- и телекоммуникационной инфраструктурой предприятия. Это обусловлено тем, что сегодня протоколы TCP/IP составляют основу локальных и территориально распределенных вычислительных сетей предприятий, сетей передачи данных, магистральных и мультисервисных сетей и Интернета. На этих же протоколах основаны современные технологии IP-телефонии, видеосвязи и видеоконференцсвязи, видео по заказу и интерактивного телевидения. Более того, и в традиционной телефонии для передачи голосового трафика на большие расстояния используются IP-сети.

Route Explorer решает весь комплекс задач, связанных с управлением маршрутизацией. В их числе разработка и оптимизация схем маршрутизации, соответствующая настройка маршрутизаторов, мониторинг, журналирование и визуализация маршрутных данных, оперативный и ретроспективный анализ этих данных с целью выявления сетевых проблем, моделирование влияния схем маршрутизации на работу сети, в том числе с использованием архива данных, и т. д. Подчеркнем, что ПО Route Explorer существенно повышает управляемость даже небольших сетей (10-20 маршрутизаторов), а для более крупных сетей без его использования практически не обойтись. Именно поэтому это ПО используют крупнейшие телекоммуникационные компании во всем мире, такие, как AOL, BT, Cox, KDDI, Midcontinent Communications, NTT Communications, Song, TeliaSonera, T-mobile, Verizon.

"Энвижн Груп" стала первой компанией на российском рынке, готовой к использованию системы Route Explorer в составе решений для операторов связи и корпоративных заказчиков. Компания рассматривает ПО Route Explorer как один из важнейших строительных блоков современных систем управления телекоммуникационной инфраструктурой предприятий и операторов связи. При этом в операторских системах управления бизнесом важным преимуществом становится соответствие ПО Route Explorer стандарту NGOSS, описывающему эталонную архитектуру систем управления мультисервисными сетями, предложенную международной организацией Telemanagement Forum (http://www.tmforum.org). Другое преимущество - возможность интеграции ПО Route Explorer с системой мониторинга сбоев и изоляции неисправностей Micromuse Netcool, также входящей в линейку продуктов, используемых "Энвижн Груп" для создания систем OSS.

Заметим, что "Энвижн Груп" дополняет продукты ведущих мировых производителей собственными разработками. Так, она вывела на российский рынок свое специализированное приложение NVision SMAP - интерактивный графический редактор пользовательских сетевых карт, полностью интегрированный с Micromuse Netcool, интегрированной системой управления крупными сетями и ИТ-инфраструктурой. Основное назначение этого решения - упростить внедрение и использование Netcool для операторов связи или предприятий, имеющих распределенную сетевую и телекоммуникационную структуру.

NVision SMAP представляет собой простой в использовании программный продукт для создания больших карт со сложной структурой, поддерживающий импорт топологической информации из внешних баз данных и "горячее" обновление карт на встроенном в Netcool редакторе карт Webtop. Использование SMAP значительно упрощает и ускоряет процесс создания карт и расширяет функциональность Netcool/Webtop. Отметим, что Micromuse Netcool - ключевое звено широкой линейки решений для управления телекоммуникационной и ИТ-инфраструктурой, в первую очередь потому, что решения на базе Netcool для управления ресурсами отличаются высокой эффективностью. В частности, согласно исследованию IDC, использование Micromuse Netcool в качестве системы управления информационной инфраструктурой повышает производительность работы пользователей на 19%; при этом эффективность работы информационной инфраструктуры возрастает на 58%, а потери от простоев оборудования снижаются на 22%.

ВВЕДЕНИЕ.. 7

1 МУЛЬТИСЕРВИСНАЯ СЕТЬ СВЯЗИ. СТРУКТУРА И УСЛУГИ.. 8

1.1 Услуги и принципы построения мультисервисной сети. 8

1.2 Услуги и технические характеристики IPTV.. 11

1.3 Сетевые протоколы для реализации услуг IPTV.. 17

1.4 Анализ требований по качеству предоставления услуг IPTV.. 21

2 СЕТИ ДОСТУПА И КОМПОНЕНТЫ СИСТЕМЫ ПРЕДОСТАВЛЕНИЯ УСЛУГ IPTV.. 24

2.1 Методы передачи трафика IPTV в IP-сетях. 24

2.2 Сети доступа в IPTV сетях. 26

2.3 Архитектура МСС для передачи видеотрафика IPTV.. 33

3 РЕГИОНАЛЬНАЯ СЕТЬ METRO ETHERNET. 36

3.1 Выбор сети доступа. 36

3.2 Услуги IPTV на базе технологии Metro Ethernet 37

3.3 Технология Metro Ethernet 42

3.4 Расчет пропускной способности для технологии Metro Ethernet 48

3.5 Расчет пропускной способности для группы абонентов Triple play по технологии Metro Ethernet 53

3.6 Сравнительный анализ беспроводных широкополосных технологий для предоставления услуг IPTV 59

4 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ.. 62

4.1 Краткая характеристика разрабатываемой системы реализации услуг IPTV на мультисервисной сети 62

4.2 Расчет себестоимости и цены научно–технической продукции. 62

5 ОХРАНА ТРУДА.. 73

5.1 Организация системы управления охраной труда на предприятии. 73

5.2 Требования пожарной безопасности при использовании средств вычислительной техники 74

5.3 Организационные, технические и иные решения по устранению опасных и вредных факторов 76

ЗАКЛЮЧЕНИЕ.. 80

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.. 81

ПРИЛОЖЕНИЕ А. Слайды презентации………………………….…………………………….. 82


ВВЕДЕНИЕ

Термин IPTV появляется в 1995 году, им был обозначен видеопродукт компании Percept Software, которая использовала IP–трафик для передачи аудио и видеоданных для индивидуальных подписчиков и абонентских групп в режиме “multicast” (групповой передачи данных, когда пакет информации предназначен для нескольких получателей в рамках группы).

После долгих попыток IP-телевидение преодолело первые технические трудности и стало доказывать свою ценность в реальных коммерческих сетях.

Сегодня при передаче телевизионных сигналов все чаще прибегают к использованию пакетной передачи, то есть передают телепрограмму с помощью IP–протокола (IPTV). Стандартные MPEG–телесигналы в данной технологии преобразуются для передачи в IP–сети. Основная система включает форматирование потоков головной станции и кодеры, преобразующие MPEG–2 в цифровой поток для IP–передачи. На головной станции установлено программное обеспечение для обслуживания абонентов. Система обслуживания абонентов контролирует каждую абонентскую приставку (Set–top–box), обслуживает подписку на каналы, открывает–закрывает каналы для каждого абонента, поддерживает электронные платежи, отправку сообщений. Изначально в абонентской приставке может быть и не загружено никакого программного обеспечения.

Когда новый абонент включает приставку и получает сигнал, то с головной станции загружается последняя программного обеспечения, что очень удобно для его обновления. Автоматизированная система расчетов рассылает счета абонентам. Если абонент не платит по счету, доступ к услуге закрывается из центра управления сетью.

Передача телевизионного изображения по интернет – сетям стала возможной только с появлением таких технологий, как ADSL 2+ и VDSL 2, а в дальнейшем – технологий пассивной оптической сети и оптического Ethernet . В настоящее время в основном существуют фрагменты сетей IPTV, опытные зоны.

IPTV строится на платформе интернета, эта сетевая система имеет возможность свести воедино мир Интернета и мир телевидения за счет конвергенции всех форм коммуникаций и развлечений в единую гибкую, полностью интегрированную мультимедийную инфраструктуру.


МУЛЬТИСЕРВИСНАЯ СЕТЬ СВЯЗИ. СТРУКТУРА И УСЛУГИ

1.1 Услуги и принципы построения мультисервисной сети

Концепция мультисервисности содержит ряд аспектов, относящихся к различным сторонам построения сети:

− конвергенция загрузки сети, определяющая передачу различных типов трафика в рамках единого формата представления данных. Например, в настоящее время передача аудио и видеотрафика происходит в основном через сети, ориентированные на коммутацию каналов, а передача данных – по сетям с коммутацией пакетов. Конвергенция загрузки сети определяет тенденцию использования сетей с коммутацией пакетов для передачи и аудио– и видеопотоков, и данных сетей. Однако это не отрицает требования дифференцирования трафика в соответствии с предоставляемым качеством услуг;

− конвергенция протоколов, определяющая переход от множества существующих сетевых протоколов к общему (как правило, IP). В то время, как существующие сети предназначены для управления множеством протоколов, таких сети ориентируются на единый протокол и различные сервисы, требующие для поддержки различных типов трафика;

− физическая конвергенция, определяющая передачу различных типов трафика в рамках единой сетевой инфраструктуры. И мультимедийный, и голосовой трафики могут быть переданы с использованием одного и того же оборудования с учетом различных требований к полосе пропускания, задержкам и «дрожанию» частоты. Протоколы резервирования ресурса, формирования приоритетных очередей и качества обслуживания (QoS), позволяют дифференцировать услуги, предоставляемые для различных видов трафика;

− конвергенция устройств, определяющая тенденцию построения архитектуры сетевых устройств, способной в рамках единой системы поддерживать разнотипный трафик. Так, коммутатор поддерживает коммутацию Ethernet–пакетов, IP–маршрутизацию и соединения АТМ. Устройства сети могут обрабатывать данные, передаваемые в соответствии с общим протоколом сети (IP) и имеющие различные сервисные требования, (гарантии ширины полосы пропускания, задержку и др.). Кроме того, устройства могут поддерживать как Web–ориентированные приложения, так и пакетную телефонию;

− конвергенция приложений, определяющая интеграцию различных функций в рамках единого программного средства. Например, Web–браузер позволяет объединить в рамках одной страницы мультимедиа – данные типа звукового, видеосигнала, графики высокого разрешения;

− конвергенция технологий выражает стремление к созданию единой общей технологической базы для построения сетей связи, и способной удовлетворить требованиям и региональных сетей связи, и локальных вычислительных сетей. Такая база уже существует: например, асинхронная система передачи (АТМ) может использоваться для построения как региональных, так и локальных вычислительных сетей;

− организационная конвергенция, предполагающая централизацию служб сетевых, телекоммуникационных, информационных под управлением менеджеров высшего звена, например, в лице вице – президента. Это обеспечивает необходимые организаторские предпосылки для интегрирования голоса, видеосигнала и данных в единой сети.

Все перечисленные аспекты определяют различные стороны проблемы построения мультисервисных сетей, способных передавать трафик различного типа, как в периферийной части сети, так и в ее ядре.

Рассмотрим основные требования, предъявляемые к построению мультисервисной сети связи:

− мультисервисность − независимость технологий предоставления услуг от транспортных технологий;

− мультимедийность − способность сети передавать многокомпонентную информацию (речь, данные видео, аудио) с необходимой синхронизацией этих компонент в реальном времени и использованием сложных конфигураций соединений;

интеллектуальность − возможность управления услугой, вызовом и соединением со стороны пользователя или поставщика услуг;

− инвариантность доступа − возможность организации доступа к услугам независимо от используемой технологии;

− многооператорность − возможность участия нескольких операторов в процессе предоставления услуги и разделение их ответственности в соответствии с их областью деятельности.

К услугам мультисервисной сети можно отнести:

– высокоскоростной доступ в сеть интернет;

– IP–телефония, в которую включены ряд функций (разные виды переадресации, ограничение связи, выбор номера, функция определения номера и т.д.);

– объединение удаленных корпоративных сетей;

– создание виртуальных корпоративных сетей (VPN).

На рисунке 1.1 представлена функциональная структура региональной цифровой телекоммуникационной мультисервисной сети связи.

Рисунок 1.1 – Функциональная структура региональной цифровой телекоммуникационной мультисервисной сети связи.

В состав мультисервисной сети связи входит следующие элементы:

– сеть широкополосного абонентского доступа обеспечивает высокоскоростной доступ в сеть Internet для предоставления всех услуг мультисервисной сети связи;

– инфотелекоммуникационная транспортная система (ИТС) – область взаимодействия инфокоммуникационной сети в терминах модели взаимодействия открытых систем образует цифровая телекоммуникационная мультисервисная сеть связи, в которой основные сетевые характеристики интегрального обслуживания трафика различной природы обеспечивает ее коммуникационное мултипротокольное ядро. В котором реализуется услуги переноса (bearer service) мультимедийной информации между сетевыми окончаниями, называемые инфокоммуникационными услугами связи. При этом доставка информационных услуг осуществляется на единый мультимедийный пользовательский терминал через стандартный широкополосный интерфейс;

– цифровая телекоммуникационная мультисервисная сеть связи страны включает в себя все виды цифровой сети связи объединяющая все сети связи, входящие в состав страны;

– мультимедийный терминал включает в себя систему обработки цифровых аудиовизуальных и мультимедийных данных и память, необходимые для работы в цифровой телекоммуникационной мультисервисной сети связи, и корректного отображения получаемой информации из сети.

1.2 Услуги и технические характеристики IPTV

Видео, передаваемое по IP, чрезвычайно чувствительно к потерям пакетов. Потеря одного или нескольких пакетов практически не отразится на восприятии картинки, но если сбой продолжается более секунды, это заметно сказывается на качестве изображения. Возможности приставок в плане компенсации потерь пакетов достаточно ограничены. Многие приставки борются с появлением видимых артефактов, связанных со сбоями в сети, используя возможности помехоустойчивого кодирования (FEC) для маскировки потерь или для повторного запроса недошедших пакетов, технически оба метода достаточно сложны. Уровень джиттера в сети также является существенным параметром, так как приставки имеют с ним ограниченные возможности борьбы (обычно в пределах 150 мс). Абсолютная задержка видеопотока, в общем–то, не важна, если она постоянна во времени; но это постоянство надо обеспечить. И, наконец, важна возможность одновременной передачи в сети видео VoIP и других потоковых трафиков, чувствительных к временным параметрам. Когда по сети передается множество разноплановых услуг, возникает потребность в гибких схемах очередности передачи потоков и других механизмах борьбы с заторами. Создаваемые очереди должны иметь разные схемы приоритетов и разные размеры буферов. Это должно быть сделано на сетевом уровне.

Управление допуском потоков в сеть: удачные схемы внедрения видеоуслуг приво–дят к стремительному росту на них числа подписчиков. Реальные проекты видео–по–требованию демонстрировали десятикратные увеличения числа подписчиков за несколько лет. При проектировании сети нельзя допускать ее перегрузки, так как она влечет за собой неконтролируемые потери пакетов, одновременно ухудшающие качество всех видеоуслуг, передаваемых в сети. Для предотвращения перегрузки сеть должна иметь механизмы взаимодействия с источниками видеопотоков и давать «добро» на запуск каждого нового видеопотока только в случае, если он не создаст затора в сети.

Время переключения с канала на канал. Хотя скорость переключения между каналами не будет единственным критерием в пользу или против подписки на услугу, но от этого параметра в сильной мере зависит удовлетворенность абонентов IP вещанием. Поэтому весьма важно спроектировать сеть таким образом, чтобы минимизировать скорость переключения. Комплексный подход к обеспечению услуг: видео–по–требованию и ТВ вещание предъявляют принципиально разные требования в плане их бесперебойности.

Вещание каналов осуществляется в многоадресном режиме. При потере в сети одного мультикастового потока без услуги могут остаться тысячи абонентов.

Поэтому сеть должна быть четко оптимизирована для прохождения таких потоков и должна обеспечивать возможности восстановления потерянной информации от мультикастовых источников. Для возможности восстановления сигнала является географическое разнесение дублирующих друг друга источников мультикастового сигнала, чтобы при необходимости сеть смогла бы быстро переключиться на альтернативный источник. Видео–по–требованию, напротив, индивидуальная услуга, поэтому потеря такого потока не столь катастрофична. В то же время ошибки при создании очередей потоков видео–по–требованию или при их администрировании могут приводить к серьезным заторам в сети. Например, если в сети случится авария, а резервные каналы окажутся слишком узкими, то неконтролируемые потери отдельных пакетов из разных потоков могут повлечь за собой сбой всех телевизионных услуг одновременно. Поэтому для вещания и видео–по–требованию необходимо разрабатывать разные схемы поддержки.

Жизненный цикл услуги: при запуске видеоуслуги темпы подписки на нее будут зависеть от плотности населения на территории ее внедрения, времени присутствия услуги на рынке, успешности рекламных кампаний и многого другого. Иными словами, абонентская база не является чем–то постоянным, и сеть не должна потребовать существенных изменений при любых темпах ее роста. При ее расчете должна быть учтена вся потенциальная аудитория. Следует также принять во внимание возможность изменений параметров самой услуги; они должны требовать минимального изменения в «логистике» потоков. Сеть должна безболезненно допускать добавление услуг, связанных, например, с сезонными интересами или с изменением требований абонентов.

Классификация услуг, предоставляемые в системах IPTV, разделены на три основные группы:

– базовые (канальные) услуги(Basic Channel Service);

– расширенные (избираемые) услуги (Enhanced Selective Service);

– интерактивные услуги по обмену данными (Interactive Data Service).

Базовый комплекс IPTV включает в себя стандартный набор услуг, предоставляемых в сетях кабельного и эфирного телевидения. Реализация этого комплекса обеспечивает возможность трансляции по сетям IР радио и телевизионных программ в сочетании с базовым комплексом услуг сетей переда­чи данных. При этом предполагается, что услуги базового комплекса не яв­ляются взаимосвязанными и могут предоставляться независимо.

Услуги расширенного комплекса IPTV реализуются в комплексах, которые обеспечивают активное взаимодействие абонента с системой, которая предоставляет услугу. Для таких комплексов характерно наличие и активное использование обратных каналов. К услугам, предоставляемым в составе расширенного комплекса IPTV, относятся:

– различные варианты реализации услуги "Видео по запросу" – VoD(Video On Demand);

– трансляция музыкальных программ по запросу абонента – MOD (Music On De–mand);

– услуга электронного вида по транслируемым программам – EPG (Electronic Program Guide);

– услуга "Персональный видеоплеер" – PVP (Personal Video Player) – имеет функции для интерактивного просмотра видео с функциями видеоплеера;

– услуга "Деловой канал" – В2В hosting (Business to Business Hosting) – предполагает организацию выделенного канала для обмена оперативными данными и проведения видеоконференций между подразделениями одной компании;

– услуга "Персональный канал" – С2С hosting (Channel to Channel Hosting) – обеспечивает организацию выделенного канала внутренне­го обмена групп пользователей;

– услуга "Углы зрения" – (Multi–angle Service) – обеспечивает пользовате­лю возможность оперативно изменять ракурс обзора представляемого в видеопрограмме объекта.

Комплекс интерактивных услуг по обмену данными сетей IPTV представляет со­бой расширенный набор информационных сервисов сети Интернет, объеди­ненных в пяти тематических категориях:

Услуги информационной категории обеспечивают возможность получения оперативных сообщений информационных служб, например, региональные и мировые новости, прогноз погоды.

Услуги IPTV, отнесенные к коммерческой категории, предназначены для поддержки сервисов, связанных с финансовыми расчетами и требующих повышенный уровень информационной безопасности. К таким сервисам в пер­вую очередь можно отнести электронные покупки, участие в электронных аукционах, электронные операции с платежными средствами.

К услугам коммуникационной категории в описываемом документе отнесены классические информационные сервисы сети Интернет - электронная почта, различные службы обмена сообщениями. В эту же категорию вклю­чены услуги VoIP и видеоконференция.

Услуги образовательной категории предназначены для организации и поддержки дистанционного обучения различных уровней – начиная от начальной школы вплоть до высших учебных заведений. Специальные образовательные услуги, такие, например, как изучение иностранных языков, также отнесены к данной категории.

Основным преимуществом телевизионных систем, основанных на протоколе сети Интернет, является способ организации доставки телевизионных программ. В отличие от классических систем телевидения, которые основаны на вещании всем абонентам всего комплекса программ, абонент IPTV сам определяет состав и насыщенность приходящего к нему информационного потока, что существенно снижает требования к пропускной способности наиболее протяженной части канала доставки программ.

Системы, предназначенные для предоставления услуги VoD , обеспечивают абоненту возможность заказать доставку или трансляцию выбранного видеофильма, или видеопрограммы. Абонент, использующий такую услугу, получает возможность просматривать заказанную видеопрограмму на собственном телевизионном приемнике или персональном компьютере. В процессе просмотра программы абонент может использовать стандартный набор функций управления воспроизведением, например, функции остановки кадра, прямой и обратной перемотки фильма.

Системы VoD могут быть построены на основе двух различных схем достав­ки заказанных программ абоненту:

­– потоковая доставка видеопрограмм;

– доставка видеопрограмм по расписанию.

В первом случае процесс доставки видеопрограммы абоненту выполняется в реальном масштабе времени на фоне ее просмотра. При этом очередные фрагменты просматриваемой программы доставляются абоненту по высоко­скоростному каналу прямым потоком или блоками с периодом 10-15 минут. Такой режим доставки обеспечивает возможность просмотра видеофильма практически сразу после оформления заказа и не предъявляет высоких требо­ваний к аппаратуре воспроизведения. Системы потоковой доставки, в свою очередь, подразделяются на две категории:

– упрощенные потоковые системы;

– полные потоковые системы – T–VoD (True Video On Demand).

Системы T–VoDиспользуют прямую потоковую доставку и поэтому способны обеспечить абоненту возможность полного управления режимом просмотра принимаемой видеопрограммы. В отличие от T–VoD, в упрощенных потоковых системах применяется блоковая доставка видеопрограмм, что может существенно ограничить возможности абонента по управлению воспроизведением принимаемой видеопрограммы. Применение обоих вариантов потоковой доставки видеопрограмм в системах VoDцелесообразно только при наличии высокоскоростного канала (не менее 6 Мбит/сек) у абонента до провайдера данной услуги.

В системах VoD, которые применяют доставку видеопрограмм по расписа­нию, абонент во время заказа видеопрограммы должен определить удобный для себя момент начала доставки с учетом расписания трансляции данной программы по сети провайдера. Абонент также должен соответствующим образом обеспечить возможность записи транслируемой программы на воспроизводящее устройство. Сама доставка видеопрограммы в данном случае может осуществляться по относительно низкоскоростным каналам.

Передача данных в потоковых системах VoDможет быть выполнена только в цифровом формате. Эти системы, безусловно, более привлекательны для клиента, но их реализация требует больших ресурсов.

Доставка видеопрограмм по расписанию в соответствующих системах VoDможет быть выполнена в аналоговом или цифровом виде, причем форма дос­тавки в данном случае определяется возможностями используемого канала. В системах VoDможет также применяться гибридная доставка, когда при помощи специальной приставки передаваемая в цифровом формате видеопрограмма записывается на аналоговый видеомагнитофон.

Среди множества IPTV–услуг, наиболее перспективным являются:

Видео по требованию, «почти» видео по требованию, интерактивное телевидение, трансляция каналов в реальном времени, интерактивное телевидение, трансляция каналов в реальном времени, интерактивная программа передачи и персональный видеомагнитофон. Данный выбор основан на востребованности услуг на рынке, а также в связи с существующими различиями на физическом уровне.

Наряду с предложением принципиально новых продуктов, таких как Video–on–Demand, iTV и др., поставщики услуг и операторы мультисервисной сети имеют также возможность предоставлять традиционные услуги трансляции телевизионных каналов в реальном времени.

Поставщик услуг может предлагать различные тематические пакеты канало, которые могут включать как традиционные эфирные каналы, так и цифровые кабельные и спутниковые каналы. При этом абонент избавлен от необходимости приобретать такое оборудование, как спутниковый ресивер и антенну для приема спутниковых каналов, кабельный декодер для кабельных канало и оплачивать услуги различных провайдеров.

Вместо этого он получает выбранный пакет каналов с помощью своего единого абонентского устройства (в пределах набора каналов, ретранслируемых оператором) и оплачивает единый счет за все предоставленные ему услуги мультисервисной сети. Поскольку передача видеосигнала по мультисервисной сети ведется в цифровом виде, то потери качества сигнала при ретрансляции не происходит.

Благодаря применению современных цифровых технологий при ретрансляции телеканалов, в пакете цифровых услуг поставщики услуг могут предоставлять абонентам также:

– электронную программу передачи (EPG, Electronik Program Guide);

– персональный видеомагнитофон (PVR, Personal Video Recorder);

– мультиязычное звуковое сопровождение;

– мультиязычные субтитры.

В зависимости от выбранного абонентам тарифного плана ему может предоставляться доступ к различным каналам, ретранслируемым оператором.

В дополнение к перечисленным выше основным возможностям при ретрансляции телеканалов по мультисервисной сети оператором также дополнительно могут быть предоставлены следующие возможности:

– просмотр прошедших за последнее время (например, 24 часа) телепрограмм, которые абонент не успел просмотреть;

– персональная приостановка трансляции на ограниченное время (например, на 1 час), с последующим продолжением просмотра с места приостановки.

Перечисленные выше возможности часто называют функцией Shifted–TV. Они, фактически, дают абоненту все базовые возможности цифрового видеомагнитофона без необходимости иметь таковой.

Ряд дополнительных функций связан с возможностями распределенной платформы VoD по трансляции региональной рекламной информации, уникальной в пределах области покрытия каждого узла предоставления услуг. Ниже перечислены основные такие функции:

– возможность выбора абонентом режима просмотра телеканала: с рекламой (по пониженной стоимости или бесплатно) или без нее (за полную стоимость).

При просмотре фильмов доступны следующие дополнительные возможности:

– перемотка фильма вперед и назад, режим паузы, продолжение просмотра, временная приостановка просмотра с запоминанием позиции;

– трансляция фильма в режиме, позволяющим осуществить его запись на имеющиеся цифровые устройства записи;

1.3 Сетевые протоколы для реализации услуг IPTV

Протокол RTP

Протокол RTP (Real–Time Transport Protocol) является транспортным протоколом реального времени, который гарантирует доставку данных одному или более адресатам с задержкой в заданных пределах, т. е. данные могут быть воспроизведены в реальном времени.

RTP не поддерживает каких–либо механизмов доставки пакетов, обеспечения достоверности передачи или надежности соединения. Эти все функции возлагаются на транспортный протокол. RTP работает поверх UDP и может поддерживать передачу данных в реальном времени между несколькими участниками RTP–сеанса.Для каждого участника RTP сеанс определяется парой транспортных адресов назначения пакетов (один сетевой адрес – IP и пара портов: RTP и RTCP).

Пакеты RTP содержат следующие поля: идентификатор отправителя, указывающий, кто из участников генерирует данные, отметки о времени генерирования пакета, чтобы данные могли быть воспроизведены принимающей стороной с правильными интервалами, информация о порядке передачи, а также информация о характере содержимого пакета, например, о типе кодировки видеоданных (MPEG, Indeo и др.). Наличие такой информации позволяет оценить величину начальной задержки и объема буфера передачи.

Поскольку RTP определяет (и регулирует) формат полезной нагрузки передаваемых данных, с этим напрямую связана концепция синхронизации, за которую частично отвечает механизм трансляции RTP – микшер. Принимая потоки пакетов RTP от одного или более источников, микшер, комбинирует их и посылает новый поток пакетов RTP одному или более получателям. Микшер может просто комбинировать данные, а также изменять их формат, например, при комбинировании нескольких источников звука. Предположим, что новая система хочет принять участие в сеансе, но ее канал до сети не имеет достаточной емкости для поддержки всех потоков RTP, тогда микшер получает все эти потоки, объединяет их в один и передает последний новому члену сеанса. При получении нескольких потоков микшер просто складывает значения импульсно–кодовой модуляции. Заголовок RTP, генерируемый микшером, включает идентификатор отправителя, чьи данные присутствуют в пакете.

Более простое устройство – транслятор, создает один исходящий пакет RTP для каждого поступающего пакета RTP. Этот механизм может изменить формат данных в пакете или использовать иной комплект низкоуровневых протоколов для передачи данных из одного домена в другой. Например, потенциальный получатель может оказаться не в состоянии обрабатывать высокоскоростной видеосигнал, используемый другими участниками сеанса. Транслятор конвертирует видео в формат более низкого качества, требующий не такой высокой скорости передачи данных.

Протокол IP

Протокол IP является самым главным во всей иерархии протоколов семейства TCP/IP. Именно он используется для управления рассылкой TCP/IP пакетов по сети Internet. Среди различных функций, возложенных на IP обычно выделяют следующие:

– определение пакета, который является базовым понятием и единицей передачи данных в сети Internet. Многие зарубежные авторы называют такой IP-пакет датаграммой;

– определение адресной схемы, которая используется в сети Internet;

– передача данных между канальным уровнем (уровнем доступа к сети) и транспортным уровнем (другими словами мультиплексирование транспортных датаграмм во фреймы канального уровня);

– маршрутизация пакетов по сети, т.е. передача пакетов от одного шлюза к другому с целью передачи пакета машине-получателю;

– "нарезка" и сборка из фрагментов пакетов транспортного уровня.

Главными особенностями протокола IP является отсутствие ориентации на физическое или виртуальное соединение. Это значит, что прежде чем послать пакет в сеть, модуль операционной системы, реализующий IP, не проверяет возможность установки соединения, т.е. никакой управляющей информации кроме той, что содержится в самом IP-пакете, по сети не передается. Кроме этого, IP не заботится о проверке целостности информации в поле данных пакета, что заставляет отнести его к протоколам ненадежной доставки. Целостность данных проверяется протоколами транспортного уровня (TCP) или протоколами приложений.

Протокол UDP

Протокол UDP (User Datagram Protocol) описан в документе RFC 768. Протокол, обеспечивающий негарантированную доставку данных без установления виртуального соединения между программами, которым требуется использовать сетевые услуги. Он ориентирован на сервис без установления соединений и не обеспечивает надежную передачу сегментов между сетевыми приложениями. Это очень простой протокол, который развивает возможности IP–протокола лишь в части демультиплексирования потока пакетов по признаку принадлежности их определенному приложению и контроля целостности данных.

Взаимодействие между прикладными процессами UDP реализует посредством механизма протокольных портов. Протокольный порт можно определить, как абстрактную точку присутствия конкретной прикладной программы, выполняющейся на конкретном хосте. Когда рабочая станция получает пакет, в котором указан ее IP–адрес, она может направить его определенной программе, используя уникальный номер порта, назначенный этой программе в ходе выполнения процедуры установления соединения. Таким образом, в стеке протоколов TCP/IP порт является механизмом поддержания рабочей станцией одновременного выполнения нескольких прикладных процессов.

Протокол RIP.

Внутренний протокол маршрутизации RIP (Roeting Internet Protocol) является одним из наиболее распространенных протоколов маршрутизации в компьютерных сетях, который позволяет маршрутизаторам динамически обновлять маршрутную информацию, получая её от соседних маршрутизаторов.

Алгоритм маршрутизации RIP (алгоритм Беллмана – Форда) был впервые разработан в 1969 году как основной для сети ARPANET. В1994 г. был разработан протокол RIP2, который является расширением протокола RIP, обеспечивающим передачу дополнительной маршрутной информации в сообщениях RIP и повышающим уровень безопасности. Для работы в среде IPv6 была разработана версия RIPng.

Максимальное количество переприемов, разрешенное в RIP – 15. Каждый RIP–маршрутизатор по умолчанию вещает в сеть свою полную таблицу маршрутизации раз в 30 секунд.

В современных сетях возможности RIP уступают более современным протоколам, например, OSPF, так как 15 переприемов ограничивает применение протокола в больших сетях. Единственным преимуществом этого протокола является простота конфигурирования.

Протокол OSPF.

Протокол выбора наикратчайшего пути OSPF (Open Shortest Pass First) – протокол динамического маршрутизации, основанный на технологии отслеживания состояния канала и использующий для нахождения кратчайшего пути алгоритм Дейкстры.

Протокол OSPF разработан IETF в 1998 году. OSPF распространяет информацию о доступных маршрутах между маршрутизатором одной автономной системы и обеспечивает решение следующих задач:

– поддержка сетевых масок переменной длины;

– достижимость сети;

– использование пропускной способности;

– метод выбора пути.

Протокол BGP.

Протокол граничного шлюза BGP (Border Gateway Protocol) является основным протоколом динамической маршрутизации в Интернете. BGP, в отличии от других протоколов динамической маршрутизации, предназначен для обмена информации о маршрутах не между отдельными маршрутами, а между целыми автономными системами, и поэтому, помимо информации о маршрутах в сети, переносит также информацию о маршрутах на автономные системы. BGP не использует технические метрики, а осуществляет выбор наилучшего маршрута исходя из правил, принятых в сети.

BGP поддерживает бесклассовую адресацию и использует суммирование маршрутов для уменьшения таблиц маршрутизации. BGP является протоколом сетевого уровня, однако функционирует поверх протокола уровня TCP.

Протокол IGMP.

Данные мультимедиа передаются, обычно, в режиме без установления соединения (протокол UDP-RTP). Наиболее типичной схемой в этом случае является наличие одного передатчика и большого числа приемников. Эта схема реализуется с использованием многоадресной передачи, которая может осуществляться на IP и MAC уровнях. Так как соотношение IP и MAC адресов не являются однозначным, драйверы должны обеспечить обработку адресов с тем, чтобы интерфейсы получали только те кадры, которые действительно им предназначены. Для того чтобы информировать маршрутизатор о наличии участников обмена мультивещания в подсети, связанной с тем или иным интерфейсом, используется протокол IGMP.

Протокол IGMP (Internet Group Management Protocol) используется для видеоконференции и передачи звуковых сообщений. Для того чтобы участвовать в коллективных обменах, локальная сеть должна быть снабжена программой, которая поддерживает этот режим. При этом сервер локальной сети информируется о намерении использовать мультивещание. Сервер передает эту информацию другим серверам IP–сети. Следует иметь в виду, что мультикастинг также как и широковещательный ражим, заметно загружает сеть. IGMP для передачи своих сообщений использует IP дейтограммы. Для подключения к группе сначала посылается IGMP сообщение всем узлам о включении в группу, при этом локальный сервер мультивещании подготавливает маршрут. Локальный сервер мультивещания периодически проверяет узлы и определяет, не покинули они группу. Все обмены между узлами и сервером мультивещания производится в режиме мультивещания, т.е. любое сообщение адресуется всем участникам группы. Узлы не принадлежащие группе, IGMP сообщений не получают, что снижает нагрузку на сети.

При использовании мультивещания MAC переключатели переадресуют пакеты через все имеющиеся интерфейсы, что заметно ухудшают эффективность сети. Чтобы решить эту проблему компания Cisco Systems разработала протокол CGMP (Cisco Group Management Protocol), который позволяет взаимодействовать маршрутизаторам и переключателям, что позволяет передавать пакеты мультивещания только на те интерфейсы, где имеются активные члены группы.

1.4 Анализ требований по качеству предоставления услуг IPTV

Для предоставления услуг IPTV мультисервисная сеть связи должна обеспечить требуемое качество соединения и предоставляемых сервисов, т.е. должен быть обеспечен определенный уровень качества обслуживания (QoS). Но так как разнородный трафик в мультисервисных сетях предъявляет различные требования к качеству обслуживания, то сеть оператора связи должна поддерживать несколько уровней QoS, каждый из которых имеет набор нормированных параметров.

Для построения региональных (зоновых) компонентов национальной ЦТМСС рекомендованы две базовые пакетные технологии IP–QoS (технология интегральных услуг с резервированием ресурсов (Integrated Services, IntServ), технология дифференциальных услуг (Differentiated Services, DiffServ) в сочетании с технологией многопротокольной коммутации по метке (Multi–Protocol Label Switching, MPLS)).

Стандарты ITU–T для услуг IPTV.

В Международном союзе электросвязи (ITU) разработкой стандартов IPTV занимается фокус–группа IPTV (ITTV–FG), которая состоит из рабочих групп. В рамках деятельности IPTV–FG была предложена архитектура IPTV на разных уровнях детализации функций участников процесса предоставления IPTV–услуг (пользователя, оператора сети, поставщика услуг и поставщика контента). При этом на среднем уровне рассматривается несколько вариантов архитектуры: без учета возможностей сети NGN, в составе сети NGN на базе подсистемы IMS, в составе сети NGN без подсистемы IMS и конвергенция первого и второго вариантов. На верхнем уровне выделяются функции, общие для всех четырех архитектур. В области стандартизации ITU–T также входят:

– стандарты сжатия видео при предоставлении IPTV–услуг, например, MPEG–4/ AVC (H.264):

– технологии сети доступа предоставления IPTV–услуг, например:

а) APON (ATM PON, пассивная оптическая сеть поверх ATM);

б) GPON (Gigabit PON, гигабитная пассивная оптическая сеть);

в) ADSL (Asymmetric DSL, асимметричная цифровая абонентская линия);

е) VDSL (Very High Speed DSL, цифровая абонентская линия с высокой пропускной способностью);

з) FS–VDSL (Full Service–VDSL, VDSL с полным набором услуг).

Стандарты ATIS для услуг IPTV.

Альянс по решениям в области электросвязи (ATIS) осуществляет стандартизацию IPTV, в основном, в рамках комитета IPTV Interoperability Forum (IIF), занимающегося совместимости, взаимодействия и реализации IPTV– систем и услуг.

Деятельность IIF связана с архитектурой IPTV в составе сети NGN на базе платформы IMS и без подсистемы IMS, с подсистемой защиты контента DRM, а также с разработкой требований по совместимости, надежности и устойчивости компонентов архитектуры.

Стандарты ETSI для услуг IPTV.

Европейский институт стандартизации в электросвязи (ETSI) разрабатывает архитектуру IPTV в составе сети NGN на базе подсистемы IMS и без подсистемы IMS в рамках технического комитета TISPAN. Важным направление в деятельности ETISI является цифровое вещание DVB. Основные стандарты ETSI по IPTV:

TS 102 034 V1.2.1 Transport of MPEG–2 TS based DVB Service over IP based networks;

TS 102 005 V1.2.1 Implementation Guidelines for the use jf Audio–Visual Content in DVB services delivered over IP;

EN 300 468 V1.7.1 Specification for Service Information (SI) in DVB systems.

При разработке стандартов ETSI DVB используются существующие стандарты DVB, учитываются спецификация IETF, используются технологии XML и IP.

Стандарты DSL Forum для услуг IPTV.

DSL-Форум стандартизирует предоставление IPTV–услуг по широкополосному доступу, в том числе:

– технологии ADSL2+/VDSL2, объединение несколько технологий DSL, решения PON;

– управление многоадресной передачи данных и сетями VLAN – протокол IGMP и поддержка различных сетей VLAN;

– управлением доступом к IPTV-услугам и управление качеством обслуживания – получение сведений в режиме реального времени о топологии сети, о доступной ширине полосы пропускания (ШПП), возможность динамического перераспределения ресурсов для обеспечения требуемых ШПП и показателей QoS;

– домашняя сеть – первичная настройка абонентского оборудования, автоматическое распознавание, удаленное управление и самодиагностика;

– качества восприятия QoE – мониторинг и измерение показателей, определяющих качество восприятия IPTV-услуг пользователем.

Стандарты MPEGIF для услуг IPTV.

Форум MPEGIF разрабатывает спецификацию стандартов сжатия аудио и видео, таких как, MPEG-1, MPEG-2, MPEG-4, MPEG-7.

Стандарты MPEG-1 и MPEG-2 сделали возможным интерактивное видео на CD-ROM и цифровое телевидение. Стандарт MPEG-4 предоставляет стандартизированные технологические элементы, позволяющие осуществлять доступ к содержимому в области цифрового телевидения, к интерактивной графике и интерактивному мультимедиа.

MPEG-7 является стандартом ISO/IEC, разработанным MPEG (Moving Picture Experts Group) – комитетом, который разработал стандарты MPEG-1, MPEG-2, MPEG-4.

MPEG-7 формально называется «Мультимедиа–интерфейс для описания содержимого». Он имеет цель стандартизовать описание мультимедийного материала, поддерживающего некоторый уровень интерпретации смысла информации, которая может быть передана для обработки ЭВМ. Стандарт MPEG-7 не ориентирован на конкретное приложение. Он стандартизирует некоторые элементы, которые рассчитаны на поддержку широкого круга приложений.

ВВЕДЕНИЕ

телекоммуникационная сеть радиорелейная телефонная

Мультисервисная сеть (МС) - это сеть связи, построенная в соответствии с концепцией NGN и обеспечивающая предоставление неограниченного набора услуг. В настоящее время появление новых сетевых технологий привело к появлению новых терминалов, обеспечивающих: мультимедиа телекоммуникации, услуги широкополосного доступа, услуги с гарантией времени доставки и т.п. Сети, готовые предоставить любые телекоммуникационные и информационные услуги называют полносервисными или мультисервисными сетями. Мультисервисная сеть связи - это единая телекоммуникационная инфраструктура для переноса, коммутации трафика произвольного типа, порождаемого взаимодействием потребителей и поставщиков услуг связи с контролируемыми и гарантированными параметрами трафика. Данные сети должны гарантировать оговоренное качество соединений и предоставляемых услуг. Данная задача является неотъемлемой частью деятельности оператора.

ТЕХНИЧЕСКИЙ РАЗДЕЛ

Мультисервисная сеть связи

Мультисервисная сеть состоит из телефонной сети общего пользования и сети передачи данных. Коммутатор Swihch соединен с помощью одномодовой ВОЛС с АТС, через маршрутизатор Router цифровой радиорелейной линией организуется СПД.

Рис. 1.1 - Структурная схема мультисервисной сети связи

На этой схеме:

IP - межсетевой протокол

Коммутатор Swihch

SDH - синхронная цифровая иерархия

АТС - автоматическая телефонная станция

Одномодовая ВОЛС

ТФОП - телефонная сеть общего пользования

Маршрутизатор Router

ЦРРЛ - цифровая радиорелейная линия

СПД - сеть передачи данных

Описание используемых интерфейсов

1.2.1 Internet Protocol (IP) -- межсетевой протокол

Относится к маршрутизируемым протоколам сетевого уровня семейства TCP/IP. Именно IP стал тем протоколом, который объединил отдельные подсети во всемирную сеть Интернет. Неотъемлемой частью протокола является адресация сети.

IP объединяет сегменты сети в единую сеть, обеспечивая доставку данных между любыми узлами сети. Он классифицируется как протокол третьего уровня по сетевой модели OSI. IP не гарантирует надёжной доставки пакета до адресата. В частности, пакеты могут прийти не в том порядке, в котором были отправлены, продублироваться (приходят две копии одного пакета), оказаться повреждёнными (обычно повреждённые пакеты уничтожаются) или не прийти вовсе. Гарантию безошибочной доставки пакетов дают некоторые протоколы более высокого уровня -- транспортного уровня сетевой модели OSI, -- например, TCP, которые используют IP в качестве транспорта.

1.2.2 Синхронная цифровая иерархия (СЦИ: англ. SDH -- Synchronous Digital Hierarchy, SONET) -- это система передачи данных, основанная на синхронизации по времени передающего и принимающего устройства. Стандарты СЦИ определяют характеристики цифровых сигналов, включая структуру фреймов (циклов), метод мультиплексирования, иерархию цифровых скоростей и кодовые шаблоны интерфейсов и т.д.

Рис. 1.2

В схеме “кольцо” применяются только мультиплексоры ввода/вывода (ADM -Add/Drop Multiplexer).

К преимуществам SDH следует отнести модульную структуру сигнала, когда скорость уплотненного сигнала получается путем умножения базовой скорости на целое число. При этом структура цикла не меняется и не требуется формирование нового цикла. Это позволяет выделять требуемые каналы из уплотненного сигнала без демультиплексирования всего сигнала.

Особенности технологии SDH:

* предусматривает синхронную передачу и мультиплексирование. Элементы первичной сети SDH используют для синхронизации один задающий генератор, как следствие, вопросы построения систем синхронизации становятся особенно важными;

* предусматривает прямое мультиплексирование и демультиплексирование потоков PDH, так что на любом уровне иерархии SDH можно выделять загруженный поток PDH без процедуры пошагового демультиплексирования. Процедура прямого мультиплексирования называется также процедурой ввода-вывода;

* опирается на стандартные оптические и электрические интерфейсы, что обеспечивает лучшую совместимость оборудования различных фирм-производителей;

* позволяет объединить системы PDH европейской и американской иерархии, обеспечивает полную совместимость с существующими системами PDH и, в то же время, дает возможность будущего развития систем передачи, поскольку обеспечивает каналы высокой пропускной способности для передачи ATM, MAN, HDTV и т.д.;

* обеспечивает лучшее управление и самодиагностику первичной сети. Большое количество сигналов о неисправностях, передаваемых по сети SDH, дает возможность построения систем управления на основе платформы TMN.Технология SDH обеспечивает возможность управления сколь угодно разветвленной первичной сетью из одного центра.

Таблица 1.2 - Синхронная цифровая иерархия

Как работает SDH:

Вся информация в системе SDH передается в контейнерах. Контейнер представляет собой структурированные данные, передаваемые в системе. Если система PDH генерирует трафик, который нужно передать по системе SDH, то данные PDH так и SDH сначала структурируются в контейнеры, а затем к контейнеру добавляется заголовок и указатели, в результате образуется синхронный транспортный модуль STM-1. По сети контейнеры STM-1 передаются в системе SDH разных уровней (STM-n), но во всех случаях раз сформированный STM-1 может только складываться с другим транспортным модулем, т.е. имеет место мультиплексирование транспортных модулей.

Рис. 1.3 - Пример первичной сети, построенной на технологии SDH

Стремительный прогресс в области телекоммуникационных и информационных технологий привел к появлению новых терминов, обеспецивающих: мультимедиа телекоммуникации, услуги широкополосного доступа, услуги с гарантией времени доставки трафика и др. Постепенно в западной литературе сформировался термин Time Warner Full Service Network (FSN) , дословно означающий полносервисные сети, предупреждающие потерю качества из-за несвоевременной (с запаздыванием) доставки трафика . В российской литературе этот термин аналогичен понятию мультисервисных сетей , т.е. сетей, готовых к предоставлению любых телекоммуникацинных и информационных услуг – передачу голоса, мультимедийные услуги, передачу данных и многое другое. Мультисервисные сети могут быть созданы непосредственно на основе как существующих цифровых, так и виртуальных сетей.

Мультисервисная сеть (МСС) представляет собой универсальную многоцелевую среду, предназначенную для передачи речи, изображения и данных с использованием технологии коммутации пакетов (IP ). Мультисервисная сеть отличается степенью надежности, характерной для телефонных сетей (в противоположность негарантированному качеству связи через Интернет) и обеспечивает низкую стоимость передачи в расчете на единицу объема информации (приближенную к стоимости передачи данных по Интернету).

Основная задача мультисервисных сетей заключается в обеспечении работы разнородных информационных и телекоммуникационных систем и приложений в единой транспортной среде, когда для передачи обычного трафика (данных) и трафика другой информации (речи, видео и др.) используется единая инфраструктура.

МСС использует единый канал для передачи данных разных типов, позволяет уменьшить разнообразие типов оборудования, применять единые стандарты, технологии и централизованно управлять коммуникационной средой.

Интерактивные ММС предоставляют абонентам широкий спектр услуг : пакеты аналогового и цифрового телевидения, потоковое вещание, Интернет, телефонию, видеоконференция, голосование и опрос населения, видеотелефонию, видео по требованию, дистанционное обучение, медицинские консультации, оплату коммунальных услуг с автоматическим съемом показаний со счетчиков воды, тепла и электроэнергии, охранную сигнализацию, видеонаблюдение и др.

Основными составляющими мультисервисной сети являются: телепорт, транспортная сеть и кластеры. Топология сети определяется спецификой местности, на которой она развертывается.

Под телепортом понимается единый центр управления, получения, обработки, создания и передачи информации. Телепорт строится по модульной технологии (с возможностью поэтапного наращивания предоставляемых услуг) и формируется из оборудования и программного обеспечения (ПО) для организации приема эфирных и спутниковых ТВ- и радиопрограмм; формирования студийных программ; подключения к телефонной сети; подключения к сети Интернет; сбора и обработки данных теле-метрии (показания датчиков воды, электричества и т.п.); сбора и обработки данных видеонаблюдения и датчиков пожарноохранной сигнализации; мониторинга, контроля и управления состоянием сети и доступом к информационным потокам; и других видов услуг.

Транспортная сеть – двунаправленная широкополосная магистральная кабельная сеть, построенная по волоконно-оптической технологии со структурой «кольцо» или «звезда». На транспортной сети располагаются узлы ввода-вывода и обработки информации, к которым осуществляется подключение телепорта и кластеров.

Кластеры представляют собой группы от 500 до 2 тыс. абонентов, территориально расположенных в непосредственной близости друг от друга, и охватываются интерактивной распределительной сетью.

Для создания мультисервисной сети необходимо сделать следующее:

  • принять решение местными органами власти о необходимости создания сети;
  • получить информацию о состоянии существующих телекоммуникационных сетей, услугах и тарифах;
  • провести маркетинговые исследования;
  • формировать концепцию создания сети;
  • выпустить постановление об организации предприятия с определением учредителей;
  • создать технико-экономическое обоснование создания сети;
  • определить источники финансирования;
  • организовать предприятие;
  • провести изыскательские работы;
  • составить пилотный проект; бизнес-план; проектно-сметную документацию;
  • приобрести материалы и оборудование;
  • выполнить строительно-монтажные работы;
  • определить оператора сети;
  • определить порядок осуществления технического обслуживания сети.

Основные услуги:

Классификация услуг по типу передаваемой информации (контенту): услуги телефонии (и видеотелефонии); услуги передачи данных; широковещательные услуги; услуги выделенных каналов (услуги, безразличные к типу передаваемой информации)№; инфраструктурные услуги (не связаны с передачей клиентом информации – сдача в аренду инфраструктуры, консультационные услуги).

Классификация услуг по типу клиента: услуги, оказываемые другим операторам связи (провайдерам); услуги, оказываемые корпоративным клиентам; услуги, оказываемые индивидуальным пользователям.

Классификация услуг по способу доступа клиента: коммутируемые телефонные каналы или ISDN; каналы SDH различной пропускной способности; каналы Ethernet с различной скоростью передачи; технологии ADSL; гибридные сети на основе коаксиального кабеля и оптического волокна; сети беспроводного доступа и др.

Классификация услуг по типу обмена информацией: предоставление доступа к ресурсам своей сети (и, возможно, через ресурсы своей сети к ресурсам других сетей); двусторонний обмен; транзит; центр обмена информацией (с центром взаиморасчетов или без него).

Услуги, входящие в группу услуг телефонии: предоставление услуг телефонной связи; оказание дополнительных услуг добавленной ценности; организация шлюзов международного доступа для российских операторов телефонии и IP-телефонии и др.

Услуги передачи данных: услуги передачи информации по протоколу ATM; услуги передачи информации по протоколу FR; услуги передачи информации по протоколу IP и др.

Потоковое вещание

Потоковое вещание позволяет передавать мультимедийную информацию и одновременно обеспечивает её прием группой абонентов, территориально удалённых друг от друга. Потоковое вещание применяется для передачи данных большого объема, для рассылки идентичной информации большому количеству адресатов (трансляция заседаний и конференций, консультирование групп пользователей, дистанционное обучение).

Суть потоковой передачи данных заключается в следующем. Передаваемые медиа-файлы сжимаются и разделяются на части (пакеты), а затем последовательно передаются пользователю. Размер пакетов определяется пропускной способностью участка сети или канала связи между клиентом и сервером, передающим видеосигнал. Накопив достаточное количество пакетов в буфер, программа-клиент приступает к воспроизведению одного из них и одновременно получает и выполняет декомпрессию следующих. Основной задачей, стоящей перед буфером, является обеспечение плавного и непрерывного воспроизведения видеосигнала. На практике результаты работы таких приложений по-прежнему очень сильно зависят от быстродействия компьютера и от скорости сетевого соединения, поэтому качество звука/видео - это всегда компромисс. Размер потока (битрейт ) напрямую влияет на качество воспроизведения, от него также во многом зависит и то, можно ли будет смотреть видео по сети. Размер потока можно узнать в свойствах файла, однако многие кодеки используют динамически меняющийся битрейт, поэтому даже указанному значению иногда не следует верить.

Службы Windows Media . Windows Media - набор служб, работающих под управлением Microsoft Windows 2000 Server. Эти службы предназначены для передачи звуковой и видеоинформации при помощи одноадресного и группового вещания клиентам. Поставляемое содержимое может быть создано, приобретено у поставщика или передаваться с телевизионных камер и микрофонов. В последнем случае его называют живым потоком (live stream) .

Ключевым решением при проектировании AD является решение о разделении информационной инфраструктуры на иерархические домены и подразделения верхнего уровня. Типичными моделями, используемыми для такого разделения, являются модели разделения по функциональным подразделениям компании, по географическому положению и по ролям в информационной инфраструктуре компании. Часто используются комбинации этих моделей.

Состав служб Windows Media . Службы Windows Media соcтоят из служб-компонентов и административной утилиты - Администратор Windows Media (Windows Media Administrator) .

Администратор Windows Media - набор веб-страниц, который функционирует в окне браузера Microsoft Internet Explorer версии 5.0 и управляет службами-компонентами Windows Media . При помощи администратора Windows Media можно управлять локальным сервером или одними или несколькими удаленными серверами. Чтобы управлять несколькими серверами, нужно добавить серверы в список серверов, а затем соединиться с сервером, которым не обходимо управлять.

Службы Windows Media предоставляют возможность доставки мультимедийной информации большому количеству клиентов, использующих форматы ASF, WMA и WAV . Клиенты могут проигрывать такие файлы, не загружая их целиком, поскольку они принимаются по сети в виде потоковых данных. Потоковая передача данных существенно уменьшает время загрузки и требования к памяти на клиентской стороне. Она также позволяет транслировать данные неограниченной длины, например, предоставляет возможность живых трансляций.

IP-телефония

Интернет-телефония – это технология передачи телефонных речевых сообщений по сети Интернет. Работа устройств в сети Интернет осуществляется с использованием специального Интернет-протокола (Internet Protocol – IP) . В настоящее время протокол IP используется не только в сети Интернет, но и в других сетях передачи данных с пакетной коммутацией. И во всех этих сетях, в принципе, имеется возможность передавать речевые сообщения с использованием пакетов данных. Такой способ передачи речи и получил название IP-телефония . За рубежом обычно употребляется аббревиатура VoiP – Voice over IP , хотя часто используют более узкий термин «Интернет-телефония».

На первом осуществляется оцифровка голоса. Затем оцифрованные данные анализируются и обрабатываются с целью уменьшения физического объема данных, передаваемых получателю. Как правило, на этом этапе происходит подавление ненужных пауз и фонового шума, а также компрессирвоание.

На втором этапе полученная последовательность данных разбивается на пакеты и к ней добавляется протокольная информация – адрес получателя, порядковый номер пакета на случай, если они будут доставлены не последовательно, и дополнительные данные для коррекции ошибок. При этом происходит временное накопление необходимого количества данных для образования пакета до его непосредственной отправки в сеть.

Извлечение переданной голосовой информации из полученных пакетов также происходит в несколько этапов. Когда голосовые пакеты приходят на терминал получателя, то сначала проверяется их порядковая последовательность. Поскольку IP-сети не гарантируют время доставки, то пакеты со старшими порядковыми номерами могут прийти раньше, более того, интервал времени получения также может колебаться. Для восстановления исходной последовательности и синхронизации происходит временное накопление пакетов. Однако некоторые пакеты могут быть вообще потеряны при доставке, либо задержка их доставки превышает допустимый разброс. В обычных условиях приемный терминал запрашивает повторную передачу ошибочных или потерянных данных. Но передача голоса слишком критична ко времени доставки, поэтому в этом случае либо включается алгоритм аппроксимации, позволяющий на основе полученных пакетов приблизительно восстановить потерянные, либо эти потери просто игнорируются, а пропуски заполняются данными случайным образом.

Полученная таким образом (не восстановленная!) последовательность данных декомпрессируется и преобразуется непосредственно в аудио-сигнал, несущий голосовую информацию получателю.

Таким образом, с большой степенью вероятности, полученная информация не соответствует исходной (искажена) и задержана (обработка на передающей и приемной сторонах требует промежуточного накопления). Однако в некоторых пределах избыточность голосовой информации позволяет мириться с такими потерями.

В настоящее время в IP-телефонии существует два основных способа передачи голосовых пакетов по IP-сетям :

  1. Через глобальную сеть Интернет (Интернет-телефония) - полоса пропускания напрямую зависит от загруженности сети Интернет пакетами, содержащими данные, голос, графику и т.д., а значит, задержки при прохождении пакетов могут быть самыми разными.
  2. Сети передачи данных на базе выделенных каналов (IP-телефония) - можно гарантировать фиксированную (или почти фиксированную) скорость передачи.

Для того, чтобы осуществить междугородную (международную) связь с помощью телефонных серверов, организация или оператор услуги должны иметь по серверу в тех местах, куда и откуда планируются звонки. Стоимость такой связи на порядок меньше стоимости телефонного звонка по обычным телефонным линиям. Особенно велика эта разница для международных переговоров.

При предоставлении услуг в рамках сети IP-телефонии участвует большое количество субъектов, выполняющих различные организационно-технические функции. В рекомендациях TIPHON , разработанных ETSI (The European Telecommunications Standards Institute – Европейский институт стандартизации по телекоммуникациям) , определена следующая классификация для субъектов IP-телефонии:

  1. Конечный пользователь IP (IPEU) – пользователь, соединенный с IP-сетью.
  2. Провайдер доступа IP (IPАР) – компания или организация, предоставляющая доступ к IP-услугам, который может быть или доступом к частой IP-сети, или к сети Интернет.
  3. Провайдер IP-сети (IPNP) – компания или организация, который принадлежит IP-сеть.
  4. Провайдер услуг Интернет-телефонии (ITSP) – компания или организация, которая предлагает услуги телефонии через сеть Интернет.
  5. Провайдер взаимодействия (IСP) – компания или организация, которая предлагает услуги по взаимодействию между IP-сетями и сетями с коммутацией каналов для телефонного соединения.
  6. Провайдер услуг сети с коммутацией каналов (SCNP) – компания или организация, которой принадлежит сеть с коммутацией каналов.
  7. Провайдер доступа к сети с коммутацией каналов (SCАP) – компания или организация, которая предоставляет доступ к сети с коммутацией каналов.
  8. Конечный пользователь сети с коммутацией каналов (SCЕU) – пользователь, соединенный с сетью коммутации каналов.
  9. Провайдер информационных услуг (DSP – directory service provider) – провайдер справочной информации.
  10. Провайдер дополнительных услуг (VASP) – провайдер, который предоставляет дополнительные услуги помимо услуг традиционной телефонии.
  11. Брокер – провайдер делового обслуживания, который обеспечивает возможность межсетевого обмена между провайдерами IP услуг и операторами сетей с коммутацией каналов, включая урегулирование расчетов.

Видеоконференция

Видеоконференция – это вид телекоммуникаций между двумя и более абонентами, который позволяет им видеть и слышать друг друга независимо от разделяющего их расстояния. Для организации видеоконференций используется технология - видеоконференцсвязь. Общение в режиме видеоконференций также называют сеансом видеоконференцсвязи.

Видеоконференцсвязь (ВКС) – телекоммуникационная технология, обеспечивающая организацию видеоконференций между двумя и более абонентами по сети передачи данных. Во время Сеанса ВКС обеспечивается интерактивный обмен звуком и изображением. Также абоненты могут транслировать телеметрические данные, компьютерные данные, демонстрировать документы и объекты с использованием дополнительных видеокамер. Передача потока звука и видео по сети передачи данных обеспечивается путем кодирования/декодирования данных (аудио и видео потока) с использованием стандартизованных аудио- и видео-кодеков.

Основные области применения систем видеоконференцсвязи:

  • поддержка принятия оперативных решений;
  • сопровождение проектов на удаленных объектах;
  • пресс-конференции;
  • повышение квалификации специалистов;
  • дистанционное обучение.

Наибольший интерес в области образования представляет дистанционное обучение. Сочетание web-технологий и систем видеоконференций позволяет проводить лекции и семинары из одной аудитории для нескольких вузов одновременно. Тем самым значительно экономиться время преподавателей, которым больше нет необходимости совершать утомительные перелеты, достигается синхронизация образовательного процесса в региональных отделениях центральных вузов, экономятся средства частных учебных учреждений на оплату приглашенных преподавателей. При проведении семинаров и практических занятий, с одной стороны, слушатели получают наглядную информацию к материалам, сопровождающим занятие, с другой стороны, преподаватель имеет возможность удаленно (!) оценить эффективность занятия, ответить на вопрос конкретного слушателя.

Рассказать друзьям